Abstract

The weld joint is the weakest zone of a longitudinal-seam submerged arc welded (LSAW) pipe, which has great effects on its in-service properties and safety. The weld geometry and shape of the weld joint are important factors that affect the mechanical properties of the pipe. In this work, two-dimensional (2D) and three-dimensional (3D) finite element models (FEMs) of a large-diameter, heavy-wall API X80 LSAW pipe were established, and the stress distribution of the pipe was calculated to simulate the in-service gas transmission pipeline. Results showed that the stress distribution calculated by both 2D and 3D models are similar. Consequently, the effects of weld geometry, softening of heat affected zone (HAZ), and strength matching of the weld joint on bearing pressure capability of the pipe were analyzed, and the results showed that the bearing pressure capability of the pipe can be improved by controlling these parameters. These results are beneficial in providing references for welding parameter design and improved properties of the X80 LSAW pipe.

References

References
1.
Wang
,
X. X.
,
2019
, “
Overview of the Construction of Super-Large Transportation Capacity Natural Gas Pipelines at Home and Abroad, Weld
,”
Pipe Tube
,
42
(
7
), pp.
1
9
(in Chinese).10.19291/j.cnki.1001-3938.2019.7.001
2.
EbiharaSakamoto
,
K.
,
Hara
,
S.
,
Mamada
,
T.
, and
Adachi
,
N. T.
,
2014
, “
Mass Production of X-80 Plate for Bovanenkovo—UKHTA (Yamal-Europe) Gas Pipeline in Russia
,”
ASME
Paper No. IPC2014-33372.10.1115/IPC2014-33372
3.
Kong
,
J. H.
,
Zhen
,
L.
,
Guo
,
B.
,
Li
,
P. H.
,
Wang
,
A. H.
, and
Xie
,
C. S.
,
2004
, “
Influence of Mo Content on Microstructure and Mechanical Properties of High Strength Pipeline Steel
,”
Mater. Des.
,
25
(
8
), pp.
723
728
.10.1016/j.matdes.2004.03.009
4.
Zhang
,
W. W.
,
Li
,
H.
,
Chi
,
Q.
,
Zhao
,
X. W.
,
Huo
,
C. Y.
,
Qi
,
L. H.
,
Li
,
Y. H.
, and
Yang
,
K.
,
2016
, “
Technical Specifications of the X80 Large OD 1422 mm Line Pipes and the Corresponding Product Development
,”
Nat. Gas Ind.
,
36
(
6
), pp.
84
91
(in Chinese).10.3787/j.issn.1000-0976.2016.06.013
5.
Qiao
,
G.-Y.
,
Chen
,
X.-W.
,
Zhang
,
Z.-E.
,
Han
,
X.-L.
,
Wang
,
X.
,
Liao
,
B.
, and
Xiao
,
F.-R.
,
2017
, “
Mechanical Properties of High-Nb X80 Steel Weld Pipes for the Second West-to-East Gas Transmission Pipeline Project
,”
Adv. Mater. Sci. Eng.
,
2017
, pp.
1
13
.10.1155/2017/7409873
6.
Garcin
,
T.
,
Militzer
,
M.
,
Poole
,
W. J.
, and
Collins
,
L.
,
2016
, “
Microstructure Model for the Heat-Affected Zone of X80 Linepipe Steel
,”
Mater. Sci. Technol.
,
32
(
7
), pp.
708
721
.10.1080/02670836.2016.1142705
7.
Chen
,
X.
,
Lu
,
H. S.
,
Chen
,
G.
, and
Wang
,
X.
,
2015
, “
A Comparison Between Fracture Toughness at Different Locations of Longitudinal Submerged Arc Welded and Spiral Submerged Arc Welded Joints of API X80 Pipeline Steels
,”
Eng. Fract. Mech.
,
148
, pp.
110
121
.10.1016/j.engfracmech.2015.09.003
8.
Wang
,
X. L.
,
Ma
,
X. P.
,
Wang
,
Z. Q.
,
Subramanian
,
S. V.
,
Xie
,
Z. J.
,
Shang
,
C. J.
, and
Li
,
X. C.
,
2019
, “
Carbon Microalloying Effect of Base Material on Variant Selection in Coarse Grained Heat Affected Zone of X80 Pipeline Steel
,”
Mater. Charact.
,
149
, pp.
26
33
.10.1016/j.matchar.2019.01.005
9.
Chen
,
X.-W.
,
Qiao
,
G.-Y.
,
Han
,
X.-L.
,
Wang
,
X.
,
Xiao
,
F.-R.
, and
Liao
,
B.
,
2014
, “
Effects of Mo, Cr and Nb on Microstructure and Mechanical Properties of Heat Affected Zone for Nb-Bearing X80 Pipeline Steels
,”
Mater. Des.
,
53
, pp.
888
901
.10.1016/j.matdes.2013.07.037
10.
API
Specification 5 L (46 Edition),
2015
, “
Line Pipe
,” American Petroleum Institute, Washington, DC.
11.
CNPC
,
2007
, “
The Technical Conditions of the Longitudinal Submerged Arc Welded Pipe for the Second West to East Gas Pipeline Project
,” China Petroleum Enterprise Standardization, Beijing, China, Report No. Q/SY GJX 0104–2007.
12.
Dong
,
P.
, and
Hong
,
J. K.
,
2010
, “The Master S–N Curve Method: An Implementation for Fatigue Evaluation of Welded Components in the 2007 ASME B&PV Code, Section VIII, Division 2 and API 579-1/ASME FFS-1, WRC Bulletin, No. 523,” Washington, DC.
13.
Osage
,
D. A.
,
Dong
,
P.
, and
Spring
,
D.
,
2018
, “
Fatigue Assessment of Welded Joints in API579-1/ASME FFS-1 2016-Existing Methods and New Developments
,”
Procedia Eng.
,
213
, pp.
497
538
.10.1016/j.proeng.2018.02.049
14.
Sailender
,
M.
,
Chandra Mohan Reddy
,
G.
, and
Venkatesh
,
S.
,
2018
, “
Influences of Process Parameters on Weld Strength of Low Carbon Alloy Steel in Purged SAW
,”
Mater Today Proc.
,
5
(
1
), pp.
2928
2937
.10.1016/j.matpr.2018.01.088
15.
Ribeiro
,
A. C. N.
,
Henein
,
H.
,
Ivey
,
D. G.
, and
Brandi
,
S. D.
,
2016
, “
Evaluation of AH36 Microalloyed Steel Welded Joint by Submerged Arc Welding Process With One and Two Wires
,”
Mater. Res.
,
19
(
1
), pp.
143
152
.10.1590/1980-5373-MR-2015-0532
16.
Birsan
,
D. C.
,
Rusu
,
C. C.
,
Scutelnicu
,
E.
, and
Mistodie
,
L. R.
,
2013
, “
Heat Transfer Analysis in API X70 Steel Joints Performed by Double Submerged Arc Welding Process
,”
Met. Int.
,
18
(
Spec. 1
), pp.
62
65
.https://www.researchgate.net/publication/289007980_Heat_transfer_analysis_in_API_X70_steel_joints_performed_by_double_submerged_arc_welding_process
17.
Zhao
,
Z.-P.
,
Qiao
,
G.-Y.
,
Li
,
G.-P.
,
Yang
,
W.-W.
,
Liao
,
B.
, and
Xiao
,
F.-R.
,
2017
, “
Fatigue Properties of Ferrite/Bainite Dual-PhaseX80 Pipeline Steel Welded Joints
,”
Sci. Technol. Weld. Joining
,
22
(
3
), pp.
217
226
.10.1080/13621718.2016.1219120
18.
Qiao
,
G.-Y.
,
Qiao
,
M.
,
Sun
,
L.-N.
,
Han
,
X.-L.
, and
Xiao
,
F.-R.
,
2014
, “
Effects of Weld Shape on Fracture Path for Both Sides Welded Joint
,”
J. Yanshan Univ.
,
38
(
2
), pp.
102
106
(in Chinese).
19.
Murugan
,
N.
, and
Gunaraj
,
V.
,
2005
, “
Prediction and Control of Weld Geometry and Shape Relationships in Submerged Arc Welding of Pipes
,”
J. Mater. Proc. Technol.
,
168
(
3
), pp.
478
487
.10.1016/j.jmatprotec.2005.03.001
20.
Alvarez Bestard
,
G.
, and
Absi Alfaro
,
S. C.
,
2018
, “
Measurement and Estimation of the Weld Geometry in Arc Welding Processes: The Last 50years of Development
,”
J. Braz. Soc. Mech. Sci. Eng.
,
40
(
9
), p.
444
.10.1007/s40430-018-1359-2
21.
Choudhary
,
A.
,
Kumar
,
M.
, and
Unune
,
D. R.
,
2019
, “
Experimental Investigation and Optimization of Weld Characteristics During Submerged Arc Welding of AISI 1023 Steel
,”
Def. Technol.
,
15
(
1
), pp.
72
82
.10.1016/j.dt.2018.08.004
22.
Tregubov
,
G. P.
, and
Gorbach
,
V. D.
,
2004
, “
Optimisation of the Dimensions of Welded Joints by the Adaptive Control of the Process of Arc Welding
,”
Weld. Int.
,
18
(
6
), pp.
469
471
.10.1533/wint.2004.3304
23.
Kyuba
,
H.
, and
Dong
,
P.
,
2005
, “
Equilibrium-Equivalent Structural Stress Approach to Fatigue Analysis of a Rectangular Hollow Section Joint
,”
Int. J. Fatigue
,
27
(
1
), pp.
85
94
.10.1016/j.ijfatigue.2004.05.008
24.
Dong
,
P.
, and
Hong
,
J.
,
2007
, “
A Robust Structural Stress Parameter for Evaluation of Multiaxial Fatigue of Weldments
,”
J. ASTM Int.
,
3
(
7
), pp.
206
222
.10.1520/JAI100348
25.
Tsutsumi
,
S.
,
Morita
,
K.
,
Fincato
,
R.
, and
Momii
,
H.
,
2016
, “
Fatigue Life Assessment of a Non-Load Carrying Fillet Joint Considering the Effects of a Cyclic Plasticity and Weld Shape
,”
Frat. Integrita Strut.
,
10
(
38
), pp.
244
250
.10.3221/IGF-ESIS.38.33
26.
Rakin
,
M.
,
Gubeljak
,
N.
,
Dobrojević
,
M.
, and
Sedmak
,
A.
,
2008
, “
Modelling of Ductile Fracture Initiation in Strength Mismatched Welded Joint
,”
Eng. Fract. Mech.
,
75
(
11
), pp.
3499
3510
.10.1016/j.engfracmech.2007.04.026
27.
Qiao
,
G.-Y.
,
Wang
,
F.
,
Han
,
X.-L.
,
Wang
,
X.
,
Liao
,
B.
, and
Xiao
,
F.-R.
,
2011
, “
Study of Multi-Wires SAW Temperature Field Algorithm Procedures Based on APDL
,”
Trans. Mater. Heat Treat.
,
32
(
12
), pp.
159
163
(in Chinese).https://www.researchgate.net/publication/290260143_Study_of_multi-wires_SAW_temperature_field_algorithm_procedures_based_on_APDL
You do not currently have access to this content.