Abstract

Hydrogenation reactor services as key equipment in chemical and energy industries. Manufacturing processes of hydrogenation reactor changes its performance before long-term service but impact of manufacturing residual influence remains unclear. In this work, actual material strength distribution (MSD) in hydrogenation reactor shell was investigated. First, a hydrogenation reactor shell made from 2.25Cr1Mo0.25V was dissected to measure MSD in thickness. Then, a numerical model was proposed to predict actual material strength in hydrogenation reactor shell. The model employs both data-driven and finite element techniques to simulate material evolution during manufacturing. Third, the predict results were discussed with respect to accuracy based on experiment result. Results exhibit good agreement between predicted value and experiment outcomes. At last, impact of manufacturing residual influence on load capacity of hydrogenation reactor shell was investigated. Results indicate that fit for service (FFS) evaluation of hydrogenation reactor based on heat treatment material properties is not conservative. This work will contribute to the accurate description of hydrogenation reactor's performance.

References

References
1.
Chen
,
X.
,
Fan
,
Z.
,
Chen
,
Y.
,
Zhang
,
X.
,
Cui
,
J.
,
Zheng
,
J.
, and
Shou
,
B.
,
2018
, “
Development of Lightweight Design and Manufacture of Heavy-Duty Pressure Vessels in China
,”
ASME
Paper No. PVP2018-84176.10.1115/PVP2018-84176
2.
Tao
,
F.
,
Cheng
,
J.
,
Qi
,
Q.
,
Zhang
,
M.
,
Zhang
,
H.
, and
Sui
,
F.
,
2018
, “
Digital Twin-Driven Product Design, Manufacturing and Service With Big Data
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9–12
), pp.
3563
3576
.10.1007/s00170-017-0233-1
3.
Cerrone
,
A.
,
Hochhalter
,
J.
,
Heber
,
G.
, and
Ingraffea
,
A.
,
2014
, “
On the Effects of Modeling as-Manufactured Geometry: Toward Digital Twin
,”
Int. J. Aerosp. Eng.
,
2014
, pp.
1
10
. pp.10.1155/2014/439278
4.
Tekkaya
,
A. E.
, and
Lange
,
K.
,
2000
, “
An Improved Relationship Between Vickers Hardness and Yield Stress for Cold Formed Materials and Its Experimental Verification
,”
CIRP Ann.-Manuf. Technol.
,
49
(
1
), pp.
205
208
.10.1016/S0007-8506(07)62929-1
5.
Matocha
,
K.
,
Kander
,
L.
,
Dorazil
,
O.
,
Guan
,
K.
, and
Xu
,
Y.
,
2016
, “
The Evaluation of Actual Material Properties of Low Alloy CrMoV Steel From the Results of Small Punch Tests
,”
Procedia Mater. Sci.
,
12
, pp.
1
6
.10.1016/j.mspro.2016.03.001
6.
Chai
,
R.
,
Su
,
W.
,
Guo
,
C.
, and
Zhang
,
F.
,
2012
, “
Constitutive Relationship and Microstructure for 20CrMnTiH Steel During Warm Deformation
,”
Mater. Sci. Eng.: A
,
556
, pp.
473
478
.10.1016/j.msea.2012.07.015
7.
Li
,
Q.
,
Wang
,
T. S.
,
Jing
,
T. F.
,
Gao
,
Y. W.
,
Zhou
,
J. F.
,
Yu
,
J. K.
, and
Li
,
H. B.
,
2009
, “
Warm Deformation Behavior of Quenched Medium Carbon Steel and Its Effect on Microstructure and Mechanical Properties
,”
Mater. Sci. Eng.: A
,
515
(
1–2
), pp.
38
42
.10.1016/j.msea.2009.02.028
8.
Eghbali
,
B.
,
Abdollah-Zadeh
,
A.
, and
Hodgson
,
P. D.
,
2007
, “
Dynamic Softening of Ferrite During Large Strain Warm Deformation of a Plain-Carbon Steel
,”
Mater. Sci. Eng.: A
,
462
(
1–2
), pp.
259
263
.10.1016/j.msea.2006.04.154
9.
Murty
,
S.
,
Torizuka
,
S.
,
Nagai
,
K.
,
Kitai
,
T.
, and
Kogo
,
Y.
,
2005
, “
Dynamic Recrystallization of Ferrite During Warm Deformation of Ultrafine Grained Ultra-Low Carbon Steel
,”
Scr. Mater.
,
53
(
6
), pp.
763
768
.10.1016/j.scriptamat.2005.05.027
10.
Storojeva
,
L.
,
Ponge
,
D.
,
Kaspar
,
R.
, and
Raabe
,
D.
,
2004
, “
Development of Microstructure and Texture of Medium Carbon Steel During Heavy Warm Deformation
,”
Acta Mater.
,
52
(
8
), pp.
2209
2220
.10.1016/j.actamat.2004.01.024
11.
Song
,
Y.
,
Chai
,
M.
,
Wu
,
W.
,
Liu
,
Y.
,
Qin
,
M.
, and
Cheng
,
G.
,
2018
, “
Experimental Investigation of the Effect of Hydrogen on Fracture Toughness of 2.25Cr-1Mo-0.25V Steel and Welds After Annealing
,”
Materials
,
11
(
4
), p.
499
.10.3390/ma11040499
12.
Belyaeva
,
A. I.
,
Galuza
,
A. A.
,
Khaimovich
,
P. A.
,
Kolenov
,
I. V.
,
Savchenko
,
A. A.
,
Solodovchenko
,
S. I.
, and
Shul Gin
,
N. A.
,
2016
, “
Effect of Various Kinds of Severe Plastic Deformation on the Structure and Electromechanical Properties of Precipitation-Strengthened CuCrZr Alloy
,”
Phys. Metals Metallogr.
, 117, pp.
1170
1178
.10.1134/S0031918X16090027
13.
Tekkaya
,
A. E.
,
Allwood
,
J. M.
,
Bariani
,
P. F.
,
Bruschi
,
S.
,
Cao
,
J.
,
Gramlich
,
S.
,
Groche
,
P.
,
Hirt
,
G.
,
Ishikawa
,
T.
,
Löbbe
,
C.
,
Lueg-Althoff
,
J.
,
Merklein
,
M.
,
Misiolek
,
W. Z.
,
Pietrzyk
,
M.
,
Shivpuri
,
R.
, and
Yanagimoto
,
J.
,
2015
, “
Metal Forming Beyond Shaping: Predicting and Setting Product Properties
,”
CIRP Ann.-Manuf. Technol.
,
64
(
2
), pp.
629
653
.10.1016/j.cirp.2015.05.001
14.
Huang
,
S.
,
Chen
,
Z.
,
Li
,
Y.
, and
Zhang
,
D.
,
2019
, “
Impact of Hot Bending on the High-Temperature Performance and Hydrogen Damage of 2.25Cr-1Mo-0.25V Steel
,”
J. Mater. Eng. Perform.
,
28
(
1
), pp.
567
577
.10.1007/s11665-018-3777-9
15.
Wang
,
Y.
,
Cheng
,
G.
,
Qin
,
M.
,
Li
,
Q.
,
Zhang
,
Z.
,
Chen
,
K.
,
Li
,
Y.
,
Hu
,
H.
,
Wu
,
W.
, and
Zhang
,
J.
,
2017
, “
Effect of High Temperature Deformation on the Microstructure, Mechanical Properties and Hydrogen Embrittlement of 2.25Cr-1Mo-0.25 V Steel
,”
Int. J. Hydrogen Energy
,
42
(
38
), pp.
24549
24559
.10.1016/j.ijhydene.2017.07.237
16.
Jiang
,
Z.
,
Wang
,
P.
,
Li
,
D.
, and
Li
,
Y.
,
2017
, “
The Evolutions of Microstructure and Mechanical Properties of 2.25Cr-1Mo-0.25V Steel With Different Initial Microstructures During Tempering
,”
Mater. Sci. Eng.: A
,
699
, pp.
165
175
.10.1016/j.msea.2017.05.095
17.
Zhang, Y.
, Miao,
L.
, Wang, X., Zhang , H. , and Li, J.,
2009
, “
Evolution Behavior of Carbides in 2.25Cr-1Mo-0.25V Steel
,”
Mater. Trans.
,
50
(
11
), pp.
2507
2511
.10.2320/matertrans.M2009172
18.
Luo
,
Y.
,
Peng
,
J.
,
Wang
,
H.
, and
Wu
,
X.
,
2010
, “
Effect of Tempering on Microstructure and Mechanical Properties of a Non-Quenched Bainitic Steel
,”
Mater. Sci. Eng.: A
,
527
(
15
), pp.
3433
3437
.10.1016/j.msea.2010.02.010
19.
Nourali
,
H.
, and
Osanloo
,
M.
,
2019
, “
Mining Capital Cost Estimation Using Support Vector Regression (SVR
),”
Resour. Policy
,
62
, pp.
527
540
.10.1016/j.resourpol.2018.10.008
20.
Hong
,
W.
,
2011
, “
Electric Load Forecasting by Seasonal Recurrent SVR (Support Vector Regression) With Chaotic Artificial Bee Colony Algorithm
,”
Energy
,
36
(
9
), pp.
5568
5578
.10.1016/j.energy.2011.07.015
21.
Wang
,
H.
,
Li
,
E.
, and
Li
,
G. Y.
,
2009
, “
The Least Square Support Vector Regression Coupled With Parallel Sampling Scheme Metamodeling Technique and Application in Sheet Forming Optimization
,”
Mater. Des.
,
30
(
5
), pp.
1468
1479
.10.1016/j.matdes.2008.08.014
22.
He
,
D.
,
Lin
,
Y. C.
,
Chen
,
J.
,
Chen
,
D.
,
Huang
,
J.
,
Tang
,
Y.
, and
Chen
,
M.
,
2018
, “
Microstructural Evolution and Support Vector Regression Model for an Aged Ni-Based Superalloy During Two-Stage Hot Forming With Stepped Strain Rates
,”
Mater. Des.
,
154
, pp.
51
62
.10.1016/j.matdes.2018.05.022
23.
Dib
,
M.
,
Ribeiro
,
B.
, and
Prates
,
P.
,
2018
, “
Model Prediction of Defects in Sheet Metal Forming Processes
,”
Engineering Applications of Neural Networks
. EANN 2018 (Communications in Computer and Information Science),
E.
Pimenidis
,
C.
Jayne
, eds., Vol.
893
,
Springer
,
Cham, Switzerland
.10.1007/978-3-319-98204-5_14
24.
Desu
,
R. K.
,
Guntuku
,
S. C.
,
B
,
A.
, and
Gupta
,
A. K.
,
2014
, “
Support Vector Regression Based Flow Stress Prediction in Austenitic Stainless Steel 304
,”
Procedia Mater. Sci.
,
6
, pp.
368
375
.10.1016/j.mspro.2014.07.047
25.
Chen
,
A.
,
2007
, “
Flow Stress Prediction Model and Its Application
,”
Comput. Integr. Manuf. Syst.
,
9
, pp.
1816
1819
.http://en.cnki.com.cn/Article_en/CJFDTotal-JSJJ200709024.htm
26.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
, and
Dubourg
,
V.
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
.http://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
27.
Wang
,
Y.
,
Cheng
,
G.
,
Zhang
,
Z.
, and
Li
,
Y.
,
2017
, “
Numerical Simulation of the Four-Roll Bending Process for 2.25Cr-1Mo-0.25V Thick-Plate at Elevated Temperature
,”
ASME
Paper No. PVP2017-65629.10.1115/PVP2017-65629
28.
Ktari
,
A.
,
Antar
,
Z.
,
Haddar
,
N.
, and
Elleuch
,
K.
,
2012
, “
Modeling and Computation of the Three-Roller Bending Process of Steel Sheets
,”
J. Mech. Sci. Technol.
,
26
(
1
), pp.
123
128
.10.1007/s12206-011-0936-4
29.
Cheruvu
,
N. S.
,
1989
, “
Degradation of Mechanical Properties of Cr-Mo-V and 2.25Cr-1Mo Steel Components After Long-Term Service at Elevated Temperatures
,”
Metall. Trans. A
,
20
(
1
), pp.
87
97
.10.1007/BF02647496
You do not currently have access to this content.