Abstract

Similar to many polymer materials, high-density polyethylene (HDPE) and polyvinyl chloride (PVC) show a clear creep behavior, the rate of which is influenced by temperature, load, and time. Most bolted flange joints undergo relaxation under compression, which is caused by the creep of the material. However, the creep property of the two polymers is different under tension and compression loading. Since the sealing capacity of a flanged gasketed joint is impacted by the amount of relaxation that takes place, it is important to properly address and predict the relaxation behavior due to flange creep under compression and thereby reducing the chances of leakage failure of HDPE and PVC bolted flange joints. The main objective of this study is to analyze the compressive creep behavior of HDPE and PVC flanges under normal operating conditions. This is achieved by developing a respective creep model for the two materials, based on their short-term experimental creep test data. Both numerical and experimental simulations of the polymeric flange relaxation behavior are conducted on an NPS 3 class 150 bolted flange joint of dissimilar materials, where one of the flanges is made of HDPE or PVC material and the other one is made of steel SA105. The study also provides a clear picture on how the compression creep data of ring specimen may be utilized for predicating the flange bolt load relaxation over time at the operating temperatures.

References

References
1.
Faupel
,
J. H.
,
1958
, “
Creep and Stress-Rupture Behavior of Rigid PVC Pipe
,”
Mod. Plast.
,
35
, pp.
11
12
.
2.
Niklas
,
H.
, and
Eifflaender
,
K.
,
1959
, “
Long-Term Creep Effects With Polyethylene and Polyvinylchloride Pipe
,”
Kunststoffe
,
49
(
3
), pp.
109
113
.
3.
Bergen
,
R. L.
,
1967
, “
Creep of Thermoplastics in Glassy Region—Stress as Reduced Variable-Long-Term Creep Performance from High Stress Short-Term Data
,” SPE J., 23(10), p.
57
.
4.
Pantelelis
,
N. G.
, and
Kanarachos
,
A. E.
,
1998
, “
FEM Stress Analysis and Design of a PVC Reinforced Pipe
,”
Proceedings of the 56th Annual Technical Conference, ANTEC. Part 3 (of 3)
, Atlanta, GA, Apr. 26–May 1,
pp.
3517
3521
.https://www.researchgate.net/profile/Nikos_Pantelelis/publication/266213813_FEM_STRESS_ANALYSIS_AND_DESIGN_OF_A_PVC_REINFORCED_PIPE/links/555d997908ae8c0cab2ad749.pdf
5.
Veronda
,
D. R.
, and
Weingarten
,
V. I.
,
1975
, “
Stability of Hyperboloidal Shells
,”
J. Struct. Div.
,
101
(
7
), pp.
1585
1602
.https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0006091
6.
Sakaguchi
,
K.
, and
Kaiga
,
T.
,
1986
, “
Analysis of Creep Behaviour for PVC Sheet Under Biaxial Stress, Nippon Kikai Gakkai Ronbunshu
,”
Trans. Jpn. Soc. Mech. Eng., Part A
,
52
(
476
), pp.
1015
1020
.10.1299/kikaia.52.1015
7.
Sabuncuoglu
,
B.
,
Acar
,
M.
, and
Silberschmidt
,
V. V.
,
2011
, “
Analysis of Creep Behavior of Polypropylene Fibers
,”
Appl. Mech. Mater.
, 70, pp.
410
415
.https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0006091
8.
Dropik
,
M. J.
,
Johnson
,
D. H.
, and
Roth
,
D. E.
,
2002
, “
Developing an ANSYS Creep Model for Polypropylene From Experimental Data
,”
Proceedings of International ANSYS Conference
, Vol.
161
, PA.10.4028/www.scientific.net/amm.70.410
9.
Barbero
,
E. J.
, and
Ford
,
K. J.
,
2004
, “
Equivalent Time Temperature Model for Physical Aging and Temperature Effects on Polymer Creep and Relaxation
,”
ASME J. Eng. Mater. Technol.
,
126
(
4
), pp.
413
419
.10.1115/1.1789956
10.
Laiarinandrasana
,
L.
,
Gaudichet
,
E.
,
Oberti
,
S.
, and
Devilliers
,
C.
,
2011
, “
Effects of Aging on the Creep Behaviour and Residual Lifetime Assessment of Polyvinyl Chloride (PVC) Pipes
,”
Int. J. Pressure Vessels Piping
,
88
(
2–3
), pp.
99
108
.10.1016/j.ijpvp.2011.01.002
11.
Pulngern
,
T.
,
Preecha
,
K.
,
Sombatsompop
,
N.
, and
Rosarpitak
,
V.
,
2013
, “
Finite Element Simulation for Creep Response of Strengthened Wood/PVC Composite
,”
Adv. Mater. Res.
,
747
, pp.
261
264
.10.4028/www.scientific.net/AMR.747.261
12.
Scavuzzo
,
R. J.
, and
Srivatsan
,
T. S.
,
2006
, “
The Bending Fatigue Response and Fatigue Strength of PVC Pipe and Pipe Joints
,”
ASME
Paper No. PVP2006/ICPVT-11.10.11155/PVP2006/ICPVT-11
13.
Mao
,
F.
,
Gaunt
,
J. A.
,
Ong
,
S. K.
, and
Cheng
,
C. L.
,
2011
, “
Permeation of Petroleum-Based Hydrocarbons Through PVC Pipe Joints With Rieber Gasket Systems
,”
J. Environ. Eng.
,
137
(
12
), pp.
1128
1135
.10.1061/(ASCE)EE.1943-7870.0000431
14.
Hamouda
,
H. B. H.
,
Simoes-Betbeder
,
M.
,
Grillon
,
F.
,
Blouet
,
P.
,
Billon
,
N.
, and
Piques
,
R.
,
2001
, “
Creep Damage Mechanisms in Polyethylene Gas Pipes
,”
Polymer
,
42
(
12
), pp.
5425
5437
.10.1016/S0032-3861(00)00490-0
15.
Lu
,
X.
, and
Brown
,
N.
,
1987
, “
Effect of Thermal History on the Initiation of Slow Crack Growth on Linear Polyethylene
,”
Polymer
,
28
(
9
), pp.
1505
1511
.10.1016/0032-3861(87)90350-8
16.
Lu
,
X.
,
Wang
,
X.
, and
Brown
,
N.
,
1988
, “
Slow Fracture in a Homopolymer and Copolymer of Polyethylene
,”
J. Mater. Sci.
,
23
(
2
), pp.
643
648
.10.1007/BF01174699
17.
Lu
,
X.
, and
Brown
,
N.
,
1990
, “
The Transition From Ductile to Slow Crack Growth Failure in a Copolymer of Polyethylene
,”
J. Mater. Sci.
,
25
(
1
), pp.
411
416
.10.1007/BF00714048
18.
Wham
,
B. P.
,
Argyrou
,
C.
,
O'Rourke
,
T. D.
,
Stewart
,
H. E.
, and
Bond
,
T. K.
,
2016
, “
PVCO Pipeline Performance Under Large Ground Deformation
,”
ASME J. Pressure Vessel Technol.
,
139
(
1
), p.
011702
.10.1115/1.4033939
19.
Bouzid
,
A.
, and
Chaaban
,
A.
,
1997
, “
An Accurate Method of Evaluating Relaxation in Bolted Flanged Connections
,”
ASME J. Pressure Vessel Technol.
119(1), pp.
10
17
.10.1115/1.2842254
20.
Kanthabhabha Jeya
,
R. P.
, and
Bouzid
,
A. H.
,
2018
, “
Compression Creep and Thermal Ratcheting Behavior of High Density Polyethylene (HDPE)
,”
Polymer
,
10
(
2
), p.
156
.10.3390/polym10020156
21.
Kanthabhabha Jeya
,
R. P.
, and
Bouzid
,
A. H.
,
2019
, “
Effect of Thermal Ratcheting on the Mechanical Properties of Teflon and Fiber Based Gasket Materials
,”
J. Appl. Polym. Sci.
,
136
(
13
), p.
47265
.10.1002/app.47265
22.
Kanthabhabha Jeya
,
R. P.
, and
Bouzid
,
A. H.
,
2019
, “
Influence of Thermal Ratcheting on the Creep and Mechanical Properties of High-Density Polyethylene
,”
ASME J. Eng. Mater. Technol.
,
141
(
4
), p.
041012
.10.1115/1.4044627
23.
Nechache
,
A.
, and
Bouzid
,
A. H.
,
2008
, “
The Effect of Cylinder and Hub Creep on the Load Relaxation in Bolted Flanged Joints
,”
ASME J. Pressure Vessel Technol.
,
130
(
3
), p.
031211
.10.1115/1.2937739
24.
Derenne
,
M.
,
Marchand
,
L.
, and
Payne
,
J. R.
,
1999
,
Polytetrafluoroethylene (PFTE) Gasket Qualification
, Vol.
442
,
Welding Research Council Bulletin
,
New York
.
25.
Petersen
,
D. R.
,
Link
,
R. E.
,
Bouzid
,
A.-H.
,
Derenne
,
M.
,
Marchand
,
L.
, and
Payne
,
J. R.
,
2001
, “
Service Temperature Characterization of Polytetrafluoroethylene Based Gaskets
,”
ASTM J. Test. Eval.
,
29
(
5
), pp.
442
452
.10.1520/JTE12274J
26.
Plastic Pipe Institute,
2009
,
Handbook of Polyethylene Pipe
, 2nd ed.,
Plastic Pipe Institute
, Irving, TX.
27.
SAS IP, Inc.
,
2016
, “
ANSYS 16.0 Help
,” SAS IP, Canonsburg, PA.
You do not currently have access to this content.