Abstract

Geometrical discontinuities (such as holes and grooves) widely exist in many components, which operate at elevated temperatures. Creep assessment of the geometrical discontinuities is essential for the safe operation of the system. In general, creep evaluations are conducted from the stress-based and strain-based strategies, but comparative studies on the extent of conservatism of these two design strategies are rarely included. In this work, creep test data of the notched components made of 9–12% Cr steel conducted by authors and that of 9Cr–1Mo steel collected from published works are employed for comparative evaluations. Results indicate that strain-based and stress-based strategies are both relatively conservative for notches in metal materials, and the conservatism of the assessment strategies increases with the notch acuity ratio of the component. The differences of the conservatism for strain-based and stress-based strategies are dependent on the notch acuity ratio and the ductility of the materials. For a blunt notch, the strain-based strategy is more conservative than the stress-based strategy for materials mentioned, while the dominant assessment strategy is dependent on stress redistribution performances of components with a sharp notch.

References

1.
Gong
,
J. G.
,
Wen
,
J. F.
, and
Xuan
,
F. Z.
,
2015
, “
Research Progress on Notch Effect of High Temperature Components Under Creep-Fatigue Loading
,”
J. Mech. Eng.
,
51
(
24
), pp.
24
40
.10.3901/JME.2015.24.024
2.
Gong
,
J. G.
,
Gong
,
C.
,
Xuan
,
F. Z.
, and Chen, H.,
2019
, “
Notch Effect on Structural Strength of Components at Elevated Temperature Under Creep, Fatigue, and Creep-Fatigue Loading Conditions: Phenomenon and Mechanism
,”
ASME J. Pressure Vessel Technol.
,
141
(
5
), p. 050801.10.1115/1.4043843
3.
Gong
,
J. G.
, and
Xuan
,
F. Z.
,
2017
, “
Notch Behavior of Components Under the Stress-Controlled Creep-Fatigue Condition: Weakening or Strengthening?
,”
ASME J. Pressure Vessel Technol.
,
139
(
1
), p.
011407
.10.1115/1.4033731
4.
Xu
,
X.
,
Wang
,
G. Z.
,
Xuan
,
F. Z.
, and
Tu
,
S. T.
,
2016
, “
Effects of Creep Ductility and Notch Constraint on Creep Fracture Behavior in Notched Bar Specimens
,”
Mater. High Temp.
,
33
(
2
), pp.
198
207
.10.1080/09603409.2016.1144498
5.
Yatomi
,
M.
,
Davies
,
C. M.
, and
Nikbin
,
K. M.
,
2008
, “
Creep Crack Growth Simulations in 316H Stainless Steel
,”
Eng. Fract. Mech.
,
75
(
18
), pp.
5140
5150
.10.1016/j.engfracmech.2008.08.001
6.
Yatomi
,
M.
,
Nikbin
,
K. M.
, and
O'Dowd
,
N. P.
,
2003
, “
Creep Crack Growth Prediction Using a Damage Based Approach
,”
Int. J. Pressure Vessels Piping
,
80
(
7–8
), pp.
573
583
.10.1016/S0308-0161(03)00110-8
7.
Cocks
,
A. C. F.
, and
Ashby
,
M. F.
,
1980
, “
Intergranular Fracture During Power-Law Creep Under Multiaxial Stresses
,”
Met. Sci. J.
,
14
(
8–9
), pp.
395
402
.10.1179/030634580790441187
8.
Wichtmann
,
A.
,
2002
, “
Evaluation of Creep Damage Due to Void Growth Under Triaxial Stress States in the Design of Steam Turbine Components
,”
JSME Int. J. Ser. A-Solid Mech. Mater. Eng.
,
45
(
1
), pp.
72
76
.10.1299/jsmea.45.72
9.
Hu
,
J. D.
,
Xuan
,
F. Z.
, and
Liu
,
C. J.
,
2018
, “
A Void Growth Model of Multiaxial Power-Law Creep Rupture Involving the Void Shape Changes
,”
Int. J. Mech. Sci.
,
144
, pp.
723
730
.10.1016/j.ijmecsci.2018.05.011
10.
ASME,
2015
, “ASME Boiler & Pressure Vessel Code, III-5, High Temperature Reactors,”
American Society of Mechanical Engineers
,
New York
, Standard No. ASME III-5.
11.
ASME,
2016
, “
Satisfaction of Strain Limits for Division 5 Class a Components at Elevated Temperature Service Using Elastic-Perfectly Plastic Analysis
,”
American Society of Mechanical Engineers
,
New York
, Standard No.
Code Case N-861
.
12.
European Committee for Standardization (CEN)
,
2009
, “
Unfired Pressure Vessels. Part 3: Design
,”
European Committee for Standardization
,
Brussels, Belgium
, Standard No. EN13445-3.
13.
EDF-Energy
,
2012
, “
R5-Assessment Procedure for the High Temperature Response of Structures
,” EDF, London.
14.
Sim
,
R. G.
,
1971
, “
Evaluation of Reference Parameters for Structures Subject to Creep
,”
J. Mech. Eng. Sci.
,
13
(
1
), pp.
47
50
.10.1243/JMES_JOUR_1971_013_007_02
15.
Sim
,
R. G.
,
1970
, “
Reference Stress Concepts in the Analysis of Structures During Creep
,”
Int. J. Mech. Sci.
,
12
(
6
), pp.
561
73
.10.1016/0020-7403(70)90082-2
16.
Ainsworth
,
R. A.
, and
Goodall
,
I. W.
,
1976
, “
Creep Life Predictions for Structures Subject to Variable Loading
,”
Int. J. Solids Struct.
,
12
(
7
), pp.
501
15
.10.1016/0020-7683(76)90033-0
17.
Shen
,
X. L.
, and
Xuan
,
F. Z.
,
2016
, “
Impact of Stress Multi-Axial Effect on 316 Stainless Steel Creep Design Margin
,”
J. Mech. Strength
,
38
(
5
), pp.
1087
1092
(in Chinese).10.16579/j.issn.1001.9669.2016.05.032
18.
Gong
,
J. G.
,
Xia
,
Q. W.
, and
Xuan
,
F. Z.
,
2017
, “
Evaluation of Simplified Creep Design Methods Based on the Case Analysis of Tee Joint at Elevated Temperature
,”
ASME J. Pressure Vessel Technol.
,
139
(
4
), p.
041412
.10.1115/1.4036533
19.
Chen
,
J. J.
, and
Tu
,
S. T.
,
2003
, “
Study of Strain Based Criterion for High Temperature Design
,” In
FM2003-Structural Integrity and Materials Aging
,
G. C.
Sih
,
S. T.
Tu
, and
Z. D.
Wang
, eds., East China University of Science and Technology Press,
Shanghai, China
.
20.
Kastl
,
H.
,
1996
, “
Significance of Strain Limits for Elevated Temperature Design
,” Office for Official Publications of the European Communities, Luxemburg,
Germany
.
21.
Haque
,
M. S.
, and
Stewart
,
C. M.
,
2017
, “
Selection of Representative Stress Function Under Multiaxial Stress State Condition for Creep
,”
Paper No.
PVP2017-65296
.10.1115/PVP2017-65296
22.
Gong
,
C.
,
Niu
,
T. Y.
,
Gong
,
J. G.
, and
Xuan
,
F. Z.
,
2019
, “
Comparison of Stress-Based Creep Design Methods for Components at Elevated Temperatures in Nuclear Power Plants
,”
Engineering Structural Integrity Assessment—ESIA15, Conjunction With the 2019 International Symposium on Structural Integrity—ISSI2019
,
Manchester, UK
, May 8–9.
23.
Huddleston
,
R. L.
,
1985
, “
An Improved Multiaxial Creep-Rupture Strength Criterion
,”
ASME J. Pressure Vessel Technol.
,
107
(
4
), pp.
421
429
.10.1115/1.3264476
24.
Goyal
,
S.
,
Laha
,
K.
,
Das
,
C. R.
,
Panneerselvi
,
S.
, and
Mathew
,
M. D.
,
2014
, “
Effect of Constraint on Creep Behavior of 9Cr-1Mo Steel
,”
Metall. Mater. Trans. A-Phys. Metall. Mater. Sci.
,
45A
(
2
), pp.
619
632
.10.1007/s11661-013-2025-z
You do not currently have access to this content.