Abstract

In this paper, mechanical buckling analysis of a functionally graded (FG) elliptical plate, which is made up of saturated porous materials and is resting on two parameters elastic foundation, is investigated. The plate is subjected to in-plane force and mechanical properties of the plate assumed to be varied through the thickness of it according to three different functions, which are called porosity distributions. Since it is assumed that the plate to be thick, the higher order shear deformation theory (HSDT) is employed to analyze the plate. Using the total potential energy function and using the Ritz method, the critical buckling load of the plate is obtained and the results are verified with the simpler states in the literature. The effect of different parameters, such as different models of porosity distribution, porosity variations, pores compressibility variations, boundary conditions, and aspect ratio of the plate, is considered and has been discussed in details. It is seen that increasing the porosity coefficient decreases the stiffness of the plate and consequently the critical buckling load will be reduced. Also, by increasing the pores' compressibility, the critical buckling load will be increased. Adding the elastic foundation to the structure will increase the critical buckling load. The results of this study can be used to design more efficient structures in the future.

References

1.
Biot
,
M. A.
,
1964
, “
Theory of Buckling of a Porous Slab and Its Thermoelastic Analogy
,”
ASME J. Appl. Mech.
,
31
(
2
), pp.
194
198
.10.1115/1.3629586
2.
Detournay
,
E.
, and
Cheng
,
A. H.-D.
,
1995
, “
Fundamentals of Poroelasticity
,”
Analysis and Design Methods
,
Elsevier
,
Oxford, UK
, pp.
113
171
.https://www.sciencedirect.com/science/article/pii/B9780080406152500113
3.
Magnucki
,
K.
, and
Stasiewicz
,
P.
,
2004
, “
Elastic Buckling of a Porous Beam
,”
J. Theor. Appl. Mech.
,
42
(
4
), pp.
859
868
.http://www.ptmts.org.pl/jtam/index.php/jtam/article/view/v42n4p859
4.
Magnucki
,
K.
,
Malinowski
,
M.
, and
Kasprzak
,
J.
,
2006
, “
Bending and Buckling of a Rectangular Porous Plate
,”
Steel Compos. Struct.
,
6
(
4
), pp.
319
333
.10.12989/scs.2006.6.4.319
5.
Magnucka-Blandzi
,
E.
,
2008
, “
Axi-Symmetrical Deflection and Buckling of Circular Porous-Cellular Plate
,”
Thin-Walled Struct.
,
46
(
3
), pp.
333
337
.10.1016/j.tws.2007.06.006
6.
Jabbari
,
M.
,
Mojahedin
,
A.
,
Khorshidvand
,
A. R.
, and
Eslami
,
M. R.
,
2014
, “
Buckling Analysis of a Functionally Graded Thin Circular Plate Made of Saturated Porous Materials
,”
J. Eng. Mech.
,
140
(
2
), pp.
287
295
.10.1061/(ASCE)EM.1943-7889.0000663
7.
Jabbari
,
M.
,
Hashemitaheri
,
M.
,
Mojahedin
,
A.
, and
Eslami
,
M. R.
,
2014
, “
Thermal Buckling Analysis of Functionally Graded Thin Circular Plate Made of Saturated Porous Materials
,”
J. Therm. Stresses
,
37
(
2
), pp.
202
220
.10.1080/01495739.2013.839768
8.
Jabbari
,
M.
,
Farzaneh Joubaneh
,
E.
, and
Mojahedin
,
A.
,
2014
, “
Thermal Buckling Analysis of Porous Circular Plate With Piezoelectric Actuators Based on First Order Shear Deformation Theory
,”
Int. J. Mech. Sci.
,
83
, pp.
57
64
.10.1016/j.ijmecsci.2014.03.024
9.
Farzaneh Joubaneh
,
E.
,
Mojahedin
,
A.
,
Khorshidvand
,
A. R.
, and
Jabbari
,
M.
,
2015
, “
Thermal Buckling Analysis of Porous Circular Plate With Piezoelectric Sensor-Actuator Layers Under Uniform Thermal Load
,”
J. Sandwich Struct. Mater.
,
17
(
1
), pp.
3
25
.10.1177/1099636214554172
10.
Jabbari
,
M.
,
Rezaei
,
M.
, and
Mojahedin
,
A.
,
2016
, “
Mechanical Buckling of FG Saturated Porous Rectangular Plate With Piezoelectric Actuators
,”
Iran. J. Mech. Eng.
,
17
(
2
), p.
46
.http://jmee.isme.ir/article_27673.html
11.
Mojahedin
,
A.
,
Joubaneh
,
E. F.
, and
Jabbari
,
M.
,
2014
, “
Thermal and Mechanical Stability of a Circular Porous Plate With Piezoelectric Actuators
,”
Acta Mech.
,
225
(
12
), pp.
3437
3452
.10.1007/s00707-014-1153-x
12.
Jabbari
,
M.
,
Mojahedin
,
A.
, and
Haghi
,
M.
,
2014
, “
Buckling Analysis of Thin Circular FG Plates Made of Saturated Porous-Soft Ferromagnetic Materials in Transverse Magnetic Field
,”
Thin-Walled Struct.
,
85
, pp.
50
56
.10.1016/j.tws.2014.07.018
13.
Pradhan
,
S. C.
,
2009
, “
Buckling of Single Layer Graphene Sheet Based on Nonlocal Elasticity and Higher Order Shear Deformation Theory
,”
Phys. Lett. A
,
373
(
45
), pp.
4182
4188
.10.1016/j.physleta.2009.09.021
14.
Aagaah
,
M. R.
,
Mahinfalah
,
M.
, and
Jazar
,
G. N.
,
2006
, “
Natural Frequencies of Laminated Composite Plates Using Third Order Shear Deformation Theory
,”
Compos. Struct.
,
72
(
3
), pp.
273
279
.10.1016/j.compstruct.2004.11.012
15.
Saidi
,
A. R.
,
Rasouli
,
A.
, and
Sahraee
,
S.
,
2009
, “
Axisymmetric Bending and Buckling Analysis of Thick Functionally Graded Circular Plates Using Unconstrained Third-Order Shear Deformation Plate Theory
,”
Compos. Struct.
,
89
(
1
), pp.
110
119
.10.1016/j.compstruct.2008.07.003
16.
Ferreira
,
A. J. M.
,
Roque
,
C. M. C.
, and
Martins
,
P.
,
2003
, “
Analysis of Composite Plates Using Higher-Order Shear Deformation Theory and a Finite Point Formulation Based on the Multiquadric Radial Basis Function Method
,”
Composites, Part B
,
34
(
7
), pp.
627
636
.10.1016/S1359-8368(03)00083-0
17.
Ferreira
,
A. J. M.
,
Batra
,
R. C.
,
Roque
,
C. M. C.
,
Qian
,
L. F.
, and
Martins
,
P.
,
2005
, “
Static Analysis of Functionally Graded Plates Using Third-Order Shear Deformation Theory and a Meshless Method
,”
Compos. Struct.
,
69
(
4
), pp.
449
457
.10.1016/j.compstruct.2004.08.003
18.
Amir
,
S.
,
Bidgoli
,
E. M.-R.
, and
Arshid
,
E.
,
2018
, “
Size-Dependent Vibration Analysis of a Three-Layered Porous Rectangular Nano Plate With Piezo-Electromagnetic Face Sheets Subjected to Pre Loads Based on SSDT
,”
Mech. Adv. Mater. Struct.
, pp.
1
15
.10.1080/15376494.2018.1487612
19.
Shariat
,
B. A. S.
, and
Eslami
,
M. R.
,
2007
, “
Buckling of Thick Functionally Graded Plates Under Mechanical and Thermal Loads
,”
Compos. Struct.
,
78
(
3
), pp.
433
439
.10.1016/j.compstruct.2005.11.001
20.
Bodaghi
,
M.
, and
Saidi
,
A. R.
,
2010
, “
Levy-Type Solution for Buckling Analysis of Thick Functionally Graded Rectangular Plates Based on the Higher-Order Shear Deformation Plate Theory
,”
Appl. Math. Model.
,
34
(
11
), pp.
3659
3673
.10.1016/j.apm.2010.03.016
21.
Bodaghi
,
M.
, and
Saidi
,
A. R.
,
2011
, “
Thermoelastic Buckling Behavior of Thick Functionally Graded Rectangular Plates
,”
Arch. Appl. Mech.
,
81
(
11
), pp.
1555
1572
.10.1007/s00419-010-0501-0
22.
Mojahedin
,
A.
,
Jabbari
,
M.
,
Khorshidvand
,
A. R. R.
, and
Eslami
,
M. R. R.
,
2016
, “
Buckling Analysis of Functionally Graded Circular Plates Made of Saturated Porous Materials Based on Higher Order Shear Deformation Theory
,”
Thin-Walled Struct.
,
99
, pp.
83
90
.10.1016/j.tws.2015.11.008
23.
Rizvanov
,
R. G.
,
Abdeev
,
R. G.
,
Matveev
,
N. L.
,
Ryskulov
,
R. G.
,
Shenknekht
,
A. I.
, and
Insafutdinov
,
A. F.
,
2000
, “
Effect of the Geometry of the ‘Shell/Elliptical-Bottom’ Contact Zone on the Stress State of Pressure Vessels
,”
Chem. Pet. Eng.
,
36
(
4
), pp.
213
216
.10.1007/BF02463460
24.
Skopinskii
,
V. N.
, and
Smetankin
,
A. B.
,
2003
, “
Selection of Rational Parameters for Reinforced Pipe Connections in Elliptical Bottoms of Pressure Vessels
,”
Chem. Pet. Eng.
,
39
(
3/4
), pp.
129
133
.10.1023/A:1024275227474
25.
Leissa
,
A. W.
,
1967
, “
Vibration of a Simply-Supported Elliptical Plate
,”
J. Sound Vib.
,
6
(
1
), pp.
145
148
.10.1016/0022-460X(67)90166-6
26.
Irie
,
T.
, and
Yamada
,
G.
,
1979
, “
Free Vibration of an Orthotropic Elliptical Plate With a Similar Hole
,”
Bull. JSME
,
22
(
172
), pp.
1456
1462
.10.1299/jsme1958.22.1456
27.
Bhardwaj
,
N.
,
Gupta
,
A. P.
, and
Choong
,
K. K.
,
2010
, “
Vibration of Rectangular Orthotropic Quarter Elliptic Plates With Simply-Supported Curved Boundary and Other Complicated Effects
,”
Tamkang J. Sci. Eng.
,
7
(
2
), pp.
1
18
.10.31436/iiumej.v7i2.79
28.
Sato
,
K.
,
2001
, “
Free Flexural Vibrations of a Simply Supported Elliptical Plate Subjected to an Inplane Force
,”
Theor. Appl. Mech.
,
50
, pp.
165
181
.https://doi.org/10.11345/nctam.50.165
29.
Sato
,
K.
,
2002
, “
Vibration and Buckling of a Clamped Elliptical Plate on Elastic Foundation and Under Uniform In-Plane Force
,”
Theor. Appl. Mech. Jpn.
,
51
, pp.
49
62
.https://doi.org/10.11345/nctam.51.49
30.
Chakraverty
,
S.
, and
Petyt
,
M.
,
1997
, “
Natural Frequencies for Free Vibration of Nonhomogeneous Elliptic and Circular Plates Using Two-Dimensional Orthogonal Polynomials
,”
Appl. Math. Model.
,
21
(
7
), pp.
399
417
.10.1016/S0307-904X(97)00028-0
31.
Chakraverty
,
S.
,
Bhat
,
R. B.
, and
Stiharu
,
I.
,
2001
, “
Free Vibration of Annular Elliptic Plates Using Boundary Characteristic Orthogonal Polynomials as Shape Functions in the Rayleigh-Ritz Method
,”
J. Sound Vib.
,
241
(
3
), pp.
524
539
.10.1006/jsvi.2000.3243
32.
Chakraverty
,
S.
,
Jindal
,
R.
, and
Agarwal
,
V. K.
,
2007
, “
Vibration of Nonhomogeneous Orthotropic Elliptic and Circular Plates With Variable Thickness
,”
ASME J. Vib. Acoust.
,
129
(
2
), pp.
256
259
.10.1115/1.2346695
33.
Hasheminejad
,
S. M.
, and
Aghabeigi
,
M.
,
2011
, “
Transient Sloshing in Half-Full Horizontal Elliptical Tanks Under Lateral Excitation
,”
J. Sound Vib.
,
330
(
14
), pp.
3507
3525
.10.1016/j.jsv.2011.02.020
34.
Hasheminejad
,
S. M.
,
Rezaei
,
S.
, and
Shakeri
,
R.
,
2013
, “
Flexural Transient Response of Elastically Supported Elliptical Plates Under in-Plane Loads Using Mathieu Functions
,”
Thin-Walled Struct.
,
62
, pp.
37
45
.10.1016/j.tws.2012.07.022
35.
Nallim
,
L. G.
, and
Grossi
,
R. O.
,
2008
, “
Natural Frequencies of Symmetrically Laminated Elliptical and Circular Plates
,”
Int. J. Mech. Sci.
,
50
(
7
), pp.
1153
1167
.10.1016/j.ijmecsci.2008.04.005
36.
Zhang
,
D.-G.
,
2017
, “
Thermal Post-Buckling Analysis of Functionally Graded Material Elliptical Plates Based on High-Order Shear Deformation Theory
,”
Mech. Adv. Mater. Struct.
,
24
(
2
), pp.
142
148
.10.1080/15376494.2015.1124158
37.
Ghaheri
,
A.
,
Keshmiri
,
A.
, and
Taheri-Behrooz
,
F.
,
2014
, “
Buckling and Vibration of Symmetrically Laminated Composite Elliptical Plates on an Elastic Foundation Subjected to Uniform in-Plane Force
,”
J. Eng. Mech.
,
140
(
7
), p.
04014049
.10.1061/(ASCE)EM.1943-7889.0000760
38.
Reddy
,
J. N.
,
1984
, “
A Simple Higher-Order Theory for Laminated Composite Plates
,”
ASME J. Appl. Mech.
,
51
(
4
), pp.
745
752
.10.1115/1.3167719
39.
Mohammadimehr
,
M.
,
Arshid
,
E.
,
Alhosseini
,
S. M. A. R.
,
Amir
,
S.
, and
Arani
,
M. R. G.
,
2019
, “
Free Vibration Analysis of Thick Cylindrical MEE Composite Shells Reinforced CNTs With Temperature-Dependent Properties Resting on Viscoelastic Foundation
,”
Struct. Eng. Mech.
,
70
(
6
), p.
683
.https://doi.org/10.12989/sem.2019.70.6.683
40.
Brush
,
D. O.
,
Almroth
,
B. O.
, and
Hutchinson
,
J. W.
,
1975
, “
Buckling of Bars, Plates, and Shells
,”
ASME J. Appl. Mech.
,
42
(
4
), pp.
911
911
.10.1115/1.3423755
41.
Arshid
,
E.
, and
Khorshidvand
,
A. R.
,
2018
, “
Free Vibration Analysis of Saturated Porous FG Circular Plates Integrated With Piezoelectric Actuators Via Differential Quadrature Method
,”
Thin-Walled Struct.
,
125
, pp.
220
233
.10.1016/j.tws.2018.01.007
42.
Arshid
,
E.
,
Khorshidvand
,
A. R.
, and
Khorsandijou
,
S. M.
,
2019
, “
The Effect of Porosity on Free Vibration of SPFG Circular Plates Resting on Visco-Pasternak Elastic Foundation Based on CPT, FSDT and TSDT
,”
Struct. Eng. Mech.
,
70
(
1
), pp.
97
112
.https://doi.org/10.12989/sem.2019.70.1.097
43.
Amir
,
S.
,
Arshid
,
E.
, and
Ghorbanpour Arani
,
M. R.
,
2019
, “
Size-Dependent Magneto-Electro-Elastic Vibration Analysis of FG Saturated Porous Annular/Circular Micro Sandwich Plates Embedded With Nano-Composite Face Sheets Subjected to Multi-Physical Pre Loads
,”
Smart Struct. Syst.
,
23
(
5
), pp.
429
447
.10.12989/sss.2019.23.5.429
44.
Amir
,
S.
,
Arshid
,
E.
,
Rasti-Alhosseini
,
S. M. A.
, and
Loghman
,
A.
,
2019
, “
Quasi-3D Tangential Shear Deformation Theory for Size-Dependent Free Vibration Analysis of Three-Layered FG Porous Micro Rectangular Plate Integrated by Nano-Composite Faces in Hygrothermal Environment
,”
J. Therm. Stresses
, 43(2), pp.
133
156
.10.1080/01495739.2019.1660601
45.
Khorshidvand
,
A. R.
,
Joubaneh
,
E. F.
,
Jabbari
,
M.
, and
Eslami
,
M. R.
,
2014
, “
Buckling Analysis of a Porous Circular Plate With Piezoelectric Sensor–Actuator Layers Under Uniform Radial Compression
,”
Acta Mech.
,
225
(
1
), pp.
179
193
.10.1007/s00707-013-0959-2
46.
Amir
,
S.
,
Soleimani-Javid
,
Z.
, and
Arshid
,
E.
,
2019
, “
Size-Dependent Free Vibration of Sandwich Micro Beam With Porous Core Subjected to Thermal Load Based on SSDBT
,”
Z. Angew. Math. Mech.
,
99
(
9
), pp.
1
21
.10.1002/zamm.201800334
47.
Arshid
,
E.
, and
Khorshidvand
,
A. R.
,
2017
, “
Flexural Vibrations Analysis of Saturated Porous Circular Plates Using Differential Quadrature Method
,”
Iran. J. Mech. Eng., Trans. ISME
,
19
(
1
), pp.
78
100
.http://jmep.isme.ir/article_24897.html
48.
Arshid
,
E.
,
Kiani
,
A.
,
Amir
,
S.
, and
Zarghami Dehaghani
,
M.
,
2019
, “
Asymmetric Free Vibration Analysis of First-Order Shear Deformable Functionally Graded Magneto-Electro-Thermo-Elastic Circular Plates
,”
Proc. Inst. Mech. Eng., Part C
, 233(16), pp.
5659
5675
.10.1177/0954406219850598
49.
Arshid
,
E.
,
Kiani
,
A.
, and
Amir
,
S.
,
2019
, “
Magneto-Electro-Elastic Vibration of Moderately Thick FG Annular Plates Subjected to Multi Physical Loads in Thermal Environment Using GDQ Method by Considering Neutral Surface
,”
Proc. Inst. Mech. Eng., Part L
, 233(10), pp.
2140
2159
.10.1177/1464420719832626
50.
Amir
,
S.
,
Arshid
,
E.
,
Khoddami Maraghi
,
Z.
,
Loghman
,
A.
, and
Ghorbanpour Arani
,
A.
,
2020
, “
Vibration Analysis of Magnetorheological Fluid Circular Sandwich Plates With Magnetostrictive Facesheets Exposed to Monotonic Magnetic Field Located on Visco-Pasternak Substrate
,”
J. Vib. Control
.10.1177/1077546319899203
51.
Ventsel
,
E.
, and
Krauthammer
,
T.
,
2001
,
Thin Plates and Shells
,
Marcel Dekker
,
New York
.
You do not currently have access to this content.