Abstract

Corrosion in pipeline walls can lead to severe loss of material to a point which will cause complete loss of pipeline integrity. The contemporary approach of corrosion prevention is to use internal lining system to isolate the corrosive medium from the inner surface of the host pipe. The objective of this study is to assess the burst pressure of pipelines with internal corrosion defects. The mechanical response of carbon steel API X42, X52, and X70 pipe grades are empirically estimated and implemented in a finite element model. The geometry of an internal corrosion defect is defined through its depth, width, and length, and a parametric study is undertaken to investigate the influence of the corrosion defect parameters to the overall burst pressure of the pipe. Based on the results from the parametric study, the Buckingham π-theorem is used to derive an analytical closed-form expression to predict the burst pressure of internally corroded pipes, which is found to agree markedly well with the experimental results.

References

References
1.
ASME
,
2012
, “
Manual for Determining the Remaining Strength of Corroded Pipelines
,” American Society of Mechanical Engineers, New York, Standard No.
B31G-2012
.https://www.asme.org/getmedia/7336b61b-5762-47ca-bdcb-8a4e0de6f162/33501.pdf
2.
DNV
,
2010
, “
Recommended Practice—Corroded Pipelines
,” DNV, Oslo, Norway, Standard No. DNV-RP-F101.
3.
Bueno
,
A. H. S.
,
Moreira
,
E. D.
, and
Gomes
,
J. A. C. P.
,
2014
, “
Evaluation of Stress Corrosion Cracking and Hydrogen Embrittlement in an API Grade Steel
,”
Eng. Failure Anal.
,
36
, pp.
423
431
.10.1016/j.engfailanal.2013.11.012
4.
Capelle
,
J.
,
Gilgert
,
J.
,
Dmytrakh
,
I.
, and
Pluvinage
,
G.
,
2008
, “
Sensitivity of Pipelines With Steel API X52 to Hydrogen Embrittlement
,”
Int. J. Hydrogen Energy
,
33
(
24
), pp.
7630
7641
.10.1016/j.ijhydene.2008.09.020
5.
Jacobs
,
T. R.
,
2016
, “
Elevated Temperature Mechanical Properties of Line Pipe Steels
,”
M.S. thesis
, Colorado School of Mines, Golden, CO.https://mountainscholar.org/bitstream/handle/11124/172157/Jacobs_mines_0052E_11445.pdf?sequence=1&isAllowed=y
6.
Marvasti
,
M. H.
,
2010
, “
Crack Growth Behavior of Pipeline Steels in Near Neutral pH Soil Environment
,”
M.S. thesis
, University of Alberta, Edmonton, AB, Canada. https://link.springer.com/article/10.1007%2Fs11661-007-9184-8
7.
Sung
,
H. K.
,
Lee
,
D. H.
,
Shin
,
S. Y.
,
Lee
,
S.
,
Ro
,
Y.
,
Lee
,
C. S.
, and
Hwang
,
B.
,
2015
, “
Effects of Finish Cooling Temperature on Tensile Properties After Thermal Aging of Strain-Based API X60 Linepipe Steels
,”
Metall. Mater. Trans. A
,
46
(
9
), pp.
3989
3998
.10.1007/s11661-015-2984-3
8.
Oh
,
C.-K.
,
Kim
,
Y.-J.
,
Baek
,
J.-H.
,
Kim
,
Y.-P.
, and
Kim
,
W.
,
2007
, “
A Phenomenological Model of Ductile Fracture for API X65 Steel
,”
Int. J. Mech. Sci.
,
49
(
12
), pp.
1399
1412
.10.1016/j.ijmecsci.2007.03.008
9.
Paredes
,
M.
,
Wierzbicki
,
T.
, and
Zelenak
,
P.
,
2016
, “
Prediction of Crack Initiation and Propagation in X70 Pipeline Steels
,”
Eng. Fract. Mech.
,
168
(
Part A
), pp.
92
111
.10.1016/j.engfracmech.2016.10.006
10.
Unal
,
H. I.
,
Atapek
,
H.
,
Beleli
,
B. G.
,
Polat
,
S.
,
Gumus
,
S.
, and
Erisir
,
E.
,
2013
, “
Characterization of the Fracture Behviour of X42 Microalloyed Pipeline Steel
,”
Int. J. Struct. Integr.
,
6
(
5
), pp.
567
577
.10.1108/IJSI-09-2013-0020
11.
Haggag
,
F. M.
,
1999
, “
Nondestructive Determination of Yield Strength and Stress-Strain Curves of in-Service Transmission Pipelines Using Innovative Stress-Strain MicroprobeTM Technology
,” Department of Transportation, Advanced Technology Corporation, Washington, DC.
12.
Dotta
,
F.
, and
Ruggieri
,
C.
,
2004
, “
Structural Integrity Assessments of High Pressure Pipelines With Axial Flaws Using a Micromechanics Model
,”
Int. J. Pressure Vessels Piping, Artic.
,
81
(
9
), pp.
761
770
(in English).10.1016/j.ijpvp.2004.04.004
13.
El-Danaf
,
E.
,
Baig
,
M.
,
Almajid
,
A.
,
Alshalfan
,
W.
,
Al-Mojil
,
M.
, and
Al-Shahrani
,
S.
,
2013
, “
Mechanical, Microstructure and Texture Characterization of API X65 Steel
,”
Mater. Des.
,
47
, pp.
529
538
.10.1016/j.matdes.2012.12.031
14.
Hollomon
,
J. H.
,
1945
, “
Tensile Deformation
,”
AIME Trans.
,
12
(
4
), pp.
1
22
.http://www.aimehq.org/doclibrary-assets/books/Metals%20Technology%201945%20Volume%20XII/T.P.%201879.pdf
15.
Liessem
,
A.
,
Knauf
,
G.
, and
Zimmermann
,
S.
,
2007
, “
Strain Based Design—What the Contribution of a Pipe Manufacturer Can Be
,” Seventeenth International Offshore and Polar Engineering Conference (
ISOPE
), Lisbon, Portugal, July 1-6, p.
8
.https://www.onepetro.org/conference-paper/ISOPE-I-07-500
16.
Choi
,
J. B.
,
Goo
,
B. K.
,
Kim
,
J. C.
,
Kim
,
Y. J.
, and
Kim
,
W. S.
,
2003
, “
Development of Limit Load Solutions for Corroded Gas Pipelines
,”
Int. J. Pressure Vessels Piping
,
80
(
2
), pp.
121
128
.10.1016/S0308-0161(03)00005-X
17.
Oh
,
C.-K.
,
Kim
,
Y.-J.
,
Baek
,
J.-H.
,
Kim
,
Y.-P.
, and
Kim
,
W.-S.
,
2007
, “
Ductile Failure Analysis of API X65 Pipes With Notch-Type Defects Using a Local Fracture Criterion
,”
Int. J. Pressure Vessels Piping
,
84
(
8
), pp.
512
525
.10.1016/j.ijpvp.2007.03.002
18.
Fu
,
B.
, and
Kirkwood
,
M. G.
,
1995
, “
Predicting Failure Pressure of Internally Corroded Linepipe Using the Finite Element Method
,”
Pipeline Technology
, Vol.
5
, American Society of Mechanical Engineers, New York.
19.
Alang
,
N. A.
,
Razak
,
N. A.
,
Shafie
,
K. A.
, and
Sulaiman
,
A.
,
2013
, “
Finite Element Analysis on Burst Pressure of Steel Pipes With Corrosion Defects
,”
13th International Conference on Fracture
, Beijing, China, June 16–21, pp.
1
10
.https://www.gruppofrattura.it/ocs/index.php/ICF/icf13/paper/download/11432/10811
20.
Netto
,
T. A.
,
Ferraz
,
U. S.
, and
Estefen
,
S. F.
,
2005
, “
The Effect of Corrosion Defects on the Burst Pressure of Pipelines
,”
J. Constr. Steel Res., Artic.
,
61
(
8
), pp.
1185
1204
(in English).10.1016/j.jcsr.2005.02.010
21.
Dassault Systèmes SIMULIA Corp.,
2014
, Abaqus/Standard, 6.13 ed., Dassault Systèmes SIMULIA Corp., Johnston, RI.
22.
Zohuri
,
B.
,
2015
,
Dimensional Analysis and Self-Similarity Methods for Engineers and Scientists
,
Springer
, New York.
23.
Zhu
,
X.-K.
, and
Leis
,
B. N.
,
2007
, “
Theoretical and Numerical Predictions of Burst Pressure of Pipelines
,”
ASME J. Pressure Vessel Technol.
,
129
(
4
), pp.
644
652
.10.1115/1.2767352
24.
Zhu
,
X.-K.
, and
Leis
,
B. N.
,
2012
, “
Evaluation of Burst Pressure Prediction Models for Line Pipes
,”
Int. J. Pressure Vessels Piping
,
89
, pp.
85
97
.10.1016/j.ijpvp.2011.09.007
25.
Mok
,
D. H. B
,
Pick
,
R. J.
, and
Gloverg
,
A. G.
,
1991
, “
Bursting of Line Pipe With Long External Corrosion
,”
J. Pressure Vessel Piping
,
46
, pp.
195
216
.10.1016/0308-0161(91)90015-T
26.
Chouchaoui
,
B. A.
,
Pick
,
R. J.
, and
Yost
,
D. B.
,
1992
, “
Burst Pressure Predictions of Line Pipe Containing Single Corrosion Pits Using Finite Element Method
,” ASME Paper No. OMAE, 5(Part A), pp.
203
210
.
27.
Chouchaoui
,
B. A.
, and
Pick
,
R. J.
,
1994
, “
Behavior of Circumferentially Aligned Corrosion Pits
,”
J. Pressure Vessel Piping
,
57
, pp.
187
200
.10.1016/0308-0161(94)90052-3
28.
Cronin
,
D. S.
,
Andrew
,
R. K.
, and
Pick
,
R. J.
,
1996
, “
Assessment of Long Corrosion Grooves in Line Pipe
,”
ASME
Paper No. IPC1996-1845.10.1115/IPC1996-1845
29.
Benjamin
,
A. C.
,
Vieira
,
R. D.
,
Freire
,
J. L. F.
, and
De Castro
,
J. T. P.
,
2000
, “
Burst Tests on Pipeline With Long External Corrosion
,”
ASME
Paper No. IPC2000-193.10.1115/IPC2000-193
30.
Oh
,
B.
,
Rengard
,
O.
, and
Fredheim
,
S.
,
2000
, “
Residual Strength of Dented Pipelines
,”
International Offshore and Polar Engineering Conference
, Seattle, WA, May 28–June 2, pp.
182
188
.https://www.onepetro.org/conference-paper/ISOPE-I-00-139
31.
Noronha
,
D. B.
, Jr.
, and
Benjimin
,
A. C.
,
2002
, “
Finite Element Models for the Prediction of the Failure Pressure of Pipeline With Long Corrosion Defects
,”
ASME
Paper No. IPC2002-27191.10.1115/IPC2002-27191
32.
Freire
,
J. L. F.
,
Vieira
,
R. D.
,
Castro
,
J. T. P.
, and
Benjamin
,
A. C.
,
2006
, “
Part 3—Burst Tests of Pipeline With Extensive Longitudinal Metal Loss
,”
Exp. Tech.
,
11
, pp.
60
65
.10.1111/j.1747-1567.2006.00109.x
33.
Chauhan
,
V.
, and
Crossley
,
J.
,
2009
, “
Corrosion Assessment Guidance for High Strength Steels (Phase 1)
,” Washington, DC, Report No. R9017.
You do not currently have access to this content.