Abstract

Flow turbulence near the suction region and over the eye of a closed impeller may be troublesome during the operation of a centrifugal pump. This article aims to bring out a methodology for minimization of flow turbulence and for providing guidance to suction flow by modifying the surface design of the lock nut into a nose cap of optimized profile. The effects of this modification on the performance parameters of closed impeller of a low head, mixed flow centrifugal pump are presented here. Based on geometric constraints and impeller eye diameter, nose caps of 65 mm diameter and various nose tip angles (15–90 deg) and lengths (50–80 mm) are evaluated. Parametric studies are carried out via computational fluid dynamics (CFD) analyses using ansysfluent 17.0 as well as experimental investigations to investigate the effects on head, energy consumption, and overall efficiency for flowrates in the range of 0.25–1.5 times the flowrate at best efficiency point (BEP). The estimates of head developed obtained using CFD and experimental studies match within 4.23%. Results confirm improvement in performance parameters like head and overall efficiency due to the reduction of losses and better flow guidance in the suction region. The performance improvement is greatest for the nose cap of 900 tip angle and 50 mm length at all flowrates.

References

1.
Engin
,
T.
, and
Gur
,
M.
,
2001
, “
Performance Characteristics of a Centrifugal Pump Impeller With Running Tip Clearance Pumping Solid-Liquid Mixtures
,”
ASME J. Fluids Eng.
,
123
(
3
), pp.
532
538
.10.1115/1.1379034
2.
IEA
,
2007
,
World Energy Outlook
, International Energy Agency, Paris, France.10.1787/weo-2007-en
3.
Shiels, S.
,
1999
, “When Trimming Centrifugal Pump Impeller Can Save Energy and Increase Flow Rate,”
World Pumps
, 1999(398), pp.
37
40
.10.1016/S0262-1762(00)87460-X
4.
Šavar
,
M.
,
Kozmar
,
H.
, and
Sutlović
,
I.
,
2009
, “
Improving Centrifugal Pump Efficiency by Impeller Trimming
,”
Desalination
,
249
, pp.
654
659
.10.1016/j.desal.2008.11.018
5.
Sun-Sheng
,
Y.
,
Fan-Yu
,
K.
,
Wan-Ming
,
J.
, and
Xiao-Yun
,
Q.
,
2012
, “
Effect of Impeller Trimming Influencing Pump as Turbine
,”
Comput. Fluids
,
67
, pp.
72
78
.10.1016/j.compfluid.2012.07.009
6.
Singh
,
P.
, and
Nestmann
,
F.
,
2010
, “
Internal Hydraulic Analysis of Impeller Rounding in Centrifugal Pumps as Turbines
,”
Exp. Thermal Fluid Sci.
,
35
(
1
), pp.
121
134
.10.1016/j.expthermflusci.2010.08.013
7.
Doshi
,
A.
,
Channiwala
,
S.
, and
Singh
,
P.
,
2016
, “
Inlet Impeller Rounding in Pumps as Turbines: An Experimental Study to Investigate the Relative Effects of Blade and Shroud Rounding
,”
Exp. Thermal Fluid Sci.
,
82
, pp.
333
348
.10.1016/j.expthermflusci.2016.11.024
8.
Shouqi
,
Y.
,
Jinfeng
,
Z.
,
Tang
,
Y.
,
Jianping
,
Y.
, and
Yuedeng
,
F.
,
2009
, “
Research on the Design Method of the Centrifugal Pump With Splitter Blades
,”
ASME
Paper No. FEDSM2009-78101.10.1115/FEDSM2009-78101
9.
Ye
,
L.
,
Yuan
,
S.
,
Zhang
,
J.
, and
Yuan
,
Y.
,
2012
, “
Effects of Splitter Blades on the Unsteady Flow of a Centrifugal Pump
,”
ASME
Paper No. FEDSM2012-72155.10.1115/FEDSM2012-72155
10.
Chen
,
H.-X.
,
He
,
J.-W.
, and
Liu
,
C.
,
2017
, “
Design and Experiment of the Centrifugal Pump Impellers With Twisted Inlet
,”
J. Hydrodyn.
,
29
(
6
), pp.
1085
1088
.10.1016/S1001-6058(16)60822-3
11.
Skrzypacz
,
J.
, and
Bieganowski
,
M.
,
2017
, “
The Influence of Micro Grooves on the Parameters of the Centrifugal Pump Impeller
,”
Int. J. Mech. Sci.
,
144
, pp.
827
835
.10.1016/j.ijmecsci.2017.01.039
12.
Skrzypacz
,
J.
,
2015
, “
Investigating the Impact of Drilled Impellers Design of Rotodynamic Pumps on the Efficiency of the Energy Transfer Process
,”
Chem. Eng. Process. Process Intensif.
,
87
, pp.
60
67
.10.1016/j.cep.2014.11.006
13.
Al-Qutub
,
A. M.
,
Khalifa
,
A. E.
, and
Al-Sulaiman
,
F. A.
,
2011
, “
Exploring the Effect of V-Shaped Cut at Blade Exit of a Double Volute Centrifugal Pump
,”
ASME J. Pressure Vessel Technol.
,
134
(
2
), p.
021301
.10.1115/1.4004798
14.
Sekino
,
Y.
, and
Watanabe
,
H.
,
2016
, “
Design Optimization of Double-Suction Volute Pump
,”
World Pumps
,
2016
(
5
), pp.
32
35
.10.1016/S0262-1762(16)30101-8
15.
Chehhat
,
S. I.
, and
Ameur
,
A. M.
,
2015
, “
Blade Exit Angle Impact on Turbulent Fluid Flow and Performance of Centrifugal Pump Using CFD
,”
Third International Renewable and Sustainable Energy Conference
(
IRSEC
), Marrakech, Morocco, Dec. 10–13.10.1109/IRSEC.2015.7455001
16.
Hassan
,
F. A.
,
Abdalla
,
H. M.
, and
Abou El-Azm Aly
,
A.
,
2017
, “
Centrifugal Pump Performance Enhancement by Blade Shape Modification
,”
ASME
Paper No. GT2017-63023.10.1115/GT2017-63023
17.
Zhu
,
X.
,
Li
,
G.
,
Jiang
,
W.
, and
Fu
,
L.
,
2016
, “
Experimental and Numerical Investigation on Application of Half Vane Diffusers for Centrifugal Pump
,”
Int. Commun. Heat Mass Transf.
,
79
, pp.
114
127
.10.1016/j.icheatmasstransfer.2016.10.015
18.
Litfin
,
O.
, and
Delgado
,
A.
,
2014
, “
On the Effect of Volute Design on Unsteady Flow and Impeller Volute Interaction in a Centrifugal Pump
,”
ASME
Paper No. FEDSM2014-21533.10.1115/FEDSM2014-21533
19.
Morgenroth
,
M.
, and
Weaver
,
D. S.
,
1998
, “
Sound Generation by a Centrifugal Pump at Blade Passing Frequency
,”
ASME J. Turbomach.
,
120
(
4
), pp.
736
743
.10.1115/1.2841784
20.
Yan
,
P.
,
Chu
,
N.
, and
Wu
,
D.
,
2017
, “
Computational Fluid Dynamics-Based Pump Redesign to Improve Efficiency and Decrease Unsteady Radial Forces
,”
ASME J. Fluids Eng.
,
139
(1), p. 011101.10.1115/1.4034365
21.
Yan
,
P.
,
Wu
,
P.
, and
Wu
,
D.
,
2015
, “
High Efficiency and Low Pressure Fluctuation Redesign of a Centrifugal Pump Based on Unsteady CFD Analysis
,”
ASME
Paper No. AJKFluids2015-34110.10.1115/AJKFluids2015-34110
22.
Hou
,
H.
,
Zhang
,
Y.
,
Li
,
Z.
,
Zhou
,
X.
, and
Wang
,
Z.
,
2014
, “
Hydraulic Design of Inlet Guide Vane and Its Full Flow Passage Numerical Simulation on Centrifugal Pump
,”
ASME
Paper No. IMECE2014-36209.10.1115/IMECE2014-36209
23.
Abdul Raheem Junaidi
,
M.
,
Laksmikumari
,
N. B. V.
, and
Samad
,
M. A.
,
2015
, “
CFD Simulation to Enhance the Efficiency of Centrifugal Pump by Application of Inner Guide Vanes
,”
Fourth International Conference on Materials Processing and Characterization (ICMPC 2015)
, Vol.
2
, Hyderabad, India, Feb. 14–15, pp.
2073
2082
.
24.
Guo
,
X.-M.
,
Zhu
,
Z.-C.
,
Shi
,
G.-P.
, and
Huang
,
Y.
,
2017
, “
Effects of Rotational Speeds on the Performance of a Centrifugal Pump With a Variable-Pitch Inducer
,”
J. Hydrodyn.
,
29
(
5
), pp.
854
862
.10.1016/S1001-6058(16)60797-7
25.
Song
,
X.
,
Wood
,
H.
,
Day
,
S.
, and
Olsen
,
D.
,
2003
, “
Studies of Turbulance Models in a Computational Fluid Dynamics Model of a Blood Pump
,”
Artif. Organs
,
27
, pp.
935
937
.10.1046/j.1525-1594.2003.00025.x
26.
Shojaeefard
,
M.
,
Tahani
,
H. M.
,
Ehghaghi
,
M. B.
,
Fallahian
,
M.
, and
Beglari
,
A. M.
,
2012
, “
Numerical Study of the Effect of Some Geometric Characteristics of a Centrifugal Pump Impeller That Pumps a Viscous Fluid
,”
Comput. Fluids
,
60
, pp.
61
70
.10.1016/j.compfluid.2012.02.028
27.
Menter
,
F. R.
,
1994
, “
Two -Equation-Eddy Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
28.
ANSYS
,
ANSYS FLUENT 6.3 User Guide
, ANSYS,
Fluent Inc.
,
Lebanon, NH
.
You do not currently have access to this content.