Abstract

Pressure vessel plays an important role in wide range of applications to store gas or liquid substances. In order to design a pressure vessel safely, one of the main factors which has to be considered is selection of proper burst pressure perdition criterion. Due to large range of available materials in manufacturing of the vessels under different working conditions, several criteria to forecast burst pressure of the vessels have been developed and used by designers. Choosing the most proper criterion based on working condition and the material is a vital task to meet design requirements because inappropriate criterion may lead to unsafe vessel or over design. This issue makes not only pressure vessel design more complex but also maintenance planning, especially for designers who do not have enough experience, is a challenging task. Therefore, lack of a burst pressure predictor model, which is able to determine the pressure more accurately for wide range of materials and applications, has been remained unsolved. To evaluate machine learning techniques in prediction of burst pressure of pressure vessels, in this paper, a new model based on artificial neural network (ANN) has been proposed and developed. Input parameters of the model include internal and outer diameter, thickness, ultimate and yield strength; output is burst pressure. The obtained results showed that the constructed model has a good potential to be used as more applicable model compared to current models in design of pressure vessels.

References

1.
Moss
,
D. R.
, 2013,
Pressure Vessel Design Manual
, 4th ed., Butterworth-Heinemann, Oxford, UK.
2.
Annaratone
,
D.
,
2007
,
Pressure Vessel Design
,
Springer-Verlag
,
Berlin
.
3.
Faupel
,
J.
,
1956
, “
Yield and Bursting Characteristics of Heavy-Wall Cylinders
,”
ASME J. Appl. Mech.
,
23
, pp.
1031
1064
.
4.
Zheng
,
C.
,
2006
, “
Estimate of Bursting Pressure of Mild Steel Pressure Vessel and Presentation of Bursting Formula
,”
Chin. J. Mech. Eng.
,
19
(
3
), pp.
421
424
.10.3901/CJME.2006.03.421
5.
Svensson
,
N.
,
1958
, “
Bursting Pressure of Cylindrical and Spherical Vessels
,”
ASME J. Appl. Mech.
,
25
(
80
), pp.
89
96
.
6.
Christopher
,
T.
,
Rama Sarma
,
B. S. V.
,
Govindan Potti
,
P. K.
,
Nageswara Rao
,
B.
, and
Sankarnarayanasamy
,
K.
,
2002
, “
A Comparative Study on Failure Pressure Estimations of Unflawed Cylindrical Vessels
,”
Int. J. Pressure Vessels Piping
,
79
(
1
), pp.
53
66
.10.1016/S0308-0161(01)00126-0
7.
Brabin
,
A.
,
Rao
,
N.
, and
Christopher
,
T.
,
2009
, “
Investigation on Failure Behavior of Unflawed Steel Cylindrical Pressure Vessels Using FEA
,”
Multidiscip. Model. Mater. Struct.
,
5
(
1
), pp.
29
42
. 10.1108/15736105200900002
8.
Wellinger
,
K.
, and
Ubeing
,
D.
,
1960
, “
Festikeitsverhalten Dickwandiger Hohlzylinder Unter Innerdruck im Vollplastischen Bareich
,” Diss. TH Stuttgart 1959. Ä–#h 200N/mm“ 0,7 SN.
9.
Zheng
,
C.
, and
Lei
,
S.
,
2006
, “
Research on Bursting Pressure Formula of Mild Steel Pressure Vessel
,”
J. Zhejiang Univ.-Sci. A
,
7
(
S2
), pp.
277
281
.10.1631/jzus.2006.AS0277
10.
Evans
,
C. J.
, and
Miller
,
T. F.
,
2015
, “
Failure Prediction of Pressure Vessels Using Finite Element Analysis
,”
ASME J. Pressure Vessel Technol.
,
137
(
5
), p.
051206
.10.1115/1.4029192
11.
Deolia
,
P.
, and
Shaikh
,
F. A.
,
2016
, “
Finite Element Analysis to Estimate Burst Pressure of Mild Steel Pressure Vessel Using Ramberg–Osgood Model
,”
Perspect. Sci.
,
8
, pp.
733
735
.10.1016/j.pisc.2016.06.073
12.
Lasebikan, B. A., and Akisanya, A. R., 2014, “Burst Pressure of Super Duplex Stainless Steel Pipes Subject to Combined Axial Tension, Internal Pressure and Elevated Temperature,”
Int. J. Pressure Vessels Piping
,
119
, pp. 62–68.10.1016/j.ijpvp.2014.03.001
13.
Sulaiman
,
S.
,
Borazjani
,
S.
, and
Tang
,
S. H.
,
2013
, “
Finite Element Analysis of Filament-Wound Composite Pressure Vessel Under Internal Pressure
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
50
(
1
), p.
012061
.10.1088/1757-899X/50/1/012061
14.
Park
,
S.-H.
,
Choi
,
J.-B.
,
Huh
,
N.-S.
,
Lee
,
S.-M.
, and
Kim
,
Y.-B.
,
2017
, “
Numerical Validations of Flaw Shape Idealization Methods to Burst Pressure Estimations of Steam Generator Tube With Axial Surface Flaws
,”
ASME J. Pressure Vessel Technol.
,
140
(
1
), p.
011202
.10.1115/1.4038310
15.
Błachut
,
J.
, and
Ifayefunmi
,
O.
,
2017
, “
Burst Pressures for Toriconical Shells: Experimental and Numerical Approach
,”
ASME J. Pressure Vessel Technol.
,
139
(
5
), p.
051203
.10.1115/1.4037043
16.
Kisioglu
,
Y.
,
2011
, “
Burst Pressure Determination of Vehicle Toroidal Oval Cross-Section LPG Fuel Tanks
,”
ASME J. Pressure Vessel Technol.
,
133
(
3
), p.
031202
.10.1115/1.4002863
17.
Wang
,
H. F.
,
Sang
,
Z. F.
,
Xue
,
L. P.
, and
Widera
,
G. E. O.
,
2009
, “
Burst Pressure of Pressurized Cylinders With Hillside Nozzle
,”
ASME J. Pressure Vessel Technol.
,
131
(
4
), p.
041204
.10.1115/1.3147987
18.
Xue
,
L.
,
Widera
,
G. E. O.
, and
Sang
,
Z.
,
2010
, “
Parametric FEA Study of Burst Pressure of Cylindrical Shell Intersections
,”
ASME J. Pressure Vessel Technol.
,
132
(
3
), p.
031203
.10.1115/1.4000731
19.
Kaptan
,
A.
, and
Kisioglu
,
Y.
,
2007
, “
Determination of Burst Pressures and Failure Locations of Vehicle LPG Cylinders
,”
Int. J. Pressure Vessels Piping
,
84
(
7
), pp.
451
459
.10.1016/j.ijpvp.2007.02.004
20.
Gupta
,
S. R.
, and
Vora
,
C. P.
,
2014
, “
A Review Paper on Pressure Vessel Design and Analysis
,”
Int. J. Eng. Res.
,
3
(
3
), p.
7
. https://www.ijert.org/research/a-review-paper-on-pressure-vessel-design-and-analysis-IJERTV3IS030449.pdf
21.
Huang
,
X.
,
Chen
,
Y.
,
Lin
,
K.
,
Mihsein
,
M.
,
Kibble
,
K.
, and
Hall
,
R.
,
2007
, “
Burst Strength Analysis of Casing With Geometrical Imperfections
,”
ASME J. Pressure Vessel Technol.
,
129
(
4
), pp.
763
770
.10.1115/1.2767370
22.
Brabin
,
T. A.
,
Christopher
,
T.
, and
Nageswara Rao
,
B.
,
2011
, “
Bursting Pressure of Mild Steel Cylindrical Vessels
,”
Int. J. Pressure Vessels Piping
,
88
(
2–3
), pp.
119
122
.10.1016/j.ijpvp.2011.01.001
23.
Kamaya
,
M.
,
Suzuki
,
T.
, and
Meshii
,
T.
,
2008
, “
Failure Pressure of Straight Pipe With Wall Thinning Under Internal Pressure
,”
Int. J. Pressure Vessels Piping
,
85
(
9
), pp.
628
634
.10.1016/j.ijpvp.2007.11.005
24.
ASTM, 2019, “ASTM Compass”, 100 Barr Harbor Drive, West Conshohocken, PA, https://www.astm.org/Standard/enterprise-compass.html
25.
Moustabchir
,
H.
,
Arbaoui
,
J.
,
Azari
,
Z.
,
Hariri
,
S.
, and
Pruncu
,
C. I.
,
2018
, “
Experimental/Numerical Investigation of Mechanical Behaviour of Internally Pressurized Cylindrical Shells With External Longitudinal and Circumferential Semi-Elliptical Defects
,”
Alex. Eng. J.
,
57
(
3
), pp.
1339
1347
.10.1016/j.aej.2017.05.022
26.
Dwivedi
,
N.
,
Kumar
,
V.
,
Shrivastava
,
A.
, and
Nareliya
,
R.
,
2013
, “
Burst Pressure Assessment of Pressure Vessel Using Finite Element Analysis: A Review
,”
ASME J. Pressure Vessel Technol.
,
135
(
4
), p.
044502
.10.1115/1.4023422
27.
Law
,
M.
, and
Bowie
,
G.
,
2007
, “
Prediction of Failure Strain and Burst Pressure in High Yield-to-Tensile Strength Ratio Linepipe
,”
Int. J. Pressure Vessels Piping
,
84
(
8
), pp.
487
492
.10.1016/j.ijpvp.2007.04.002
28.
Ramesh
,
R.
, and
Joseph
,
A.
,
2017
, “
Review on Burst Pressure Analysis of Laminated Composite Pressure Vessels
,”
Int. Res. J. Eng. Technol. (IRJET)
,
4
(5), pp.
2738
2742
. https://pdfs.semanticscholar.org/46b8/f3c6e57697b407f2a15aba24211b3b453548.pdf
29.
Deolia
,
P.
, and
Shaikh
,
F. A.
, “
Burst Pressure Analysis of a Pressure Vessel: A Review
,”
Int. J. Res. Advent Technol.
, Special Issue National Conference “NCMMM-2016”, 19 March 2016. https://pdfs.semanticscholar.org/0707/85c0db719ca0a4d1ce5f991416b1ec20cea7.pdf
30.
Zhu
,
X.-K.
, and
Leis
,
B. N.
,
2012
, “
Evaluation of Burst Pressure Prediction Models for Line Pipes
,”
Int. J. Pressure Vessels Piping
,
89
, pp.
85
97
.10.1016/j.ijpvp.2011.09.007
31.
Aksoley
,
M. E.
,
Ozcelik
,
B.
, and
Bican
,
I.
,
2008
, “
Comparison of Bursting Pressure Results of LPG Tank Using Experimental and Finite Element Method
,”
J. Hazard. Mater.
,
151
(
2–3
), pp.
699
709
.10.1016/j.jhazmat.2007.06.051
32.
Izadi
,
M.
,
Mohammadzadeh
,
A.
, and
Haghighattalab
,
A.
,
2017
, “
A New Neuro-Fuzzy Approach for Post-Earthquake Road Damage Assessment Using GA and SVM Classification From QuickBird Satellite Images
,”
J. Indian Soc. Remote Sens.
,
45
(
6
), pp.
965
977
.10.1007/s12524-017-0660-3
33.
Soleimani
,
S.
,
Mousa
,
S. R.
,
Codjoe
,
J.
, and
Leitner
,
M.
,
2019
, “
A Comprehensive Railroad-Highway Grade Crossing Consolidation Model: A Machine Learning Approach
,”
Accid. Anal. Prev.
,
128
, pp.
65
77
.10.1016/j.aap.2019.04.002
34.
Tatar
,
N.
,
Saadatseresht
,
M.
,
Arefi
,
H.
, and
Hadavand
,
A.
,
2018
, “
A Robust Object-Based Shadow Detection Method for Cloud-Free High Resolution Satellite Images Over Urban Areas and Water Bodies
,”
Adv. Space Res.
,
61
(
11
), pp.
2787
2800
.10.1016/j.asr.2018.03.011
35.
Simonen
,
F. A.
, 2010, “
Pressure Vessels and Piping Systems: Reliability, Risk and Safety Assessment
,” Encyclopedia of Desalination and Water Resources (DESWARE), UK.
36.
Zolfaghari
,
A.
,
Zolfaghari
,
A.
, and
Kolahan
,
F.
,
2018
, “
Reliability and Sensitivity of Magnetic Particle Nondestructive Testing in Detecting the Surface Cracks of Welded Components
,”
Nondestruct. Test. Eval.
,
33
(
3
), pp.
290
300
.10.1080/10589759.2018.1428322
37.
Asgharzadeh
,
A.
,
Jamshidi Aval
,
H.
, and
Serajzadeh
,
S.
,
2016
, “
A Study on Flow Behavior of AA5086 Over a Wide Range of Temperatures
,”
J. Mater. Eng. Perform.
,
25
(
3
), pp.
1076
1084
.10.1007/s11665-016-1927-5
38.
Tafarroj
,
M. M.
,
Mahian
,
O.
,
Kasaeian
,
A.
,
Sakamatapan
,
K.
,
Dalkilic
,
A. S.
, and
Wongwises
,
S.
,
2017
, “
Artificial Neural Network Modeling of Nanofluid Flow in a Microchannel Heat Sink Using Experimental Data
,”
Int. Commun. Heat Mass Transfer
,
86
, pp.
25
31
.10.1016/j.icheatmasstransfer.2017.05.020
39.
Günther
,
F.
, and
Fritsch
,
S.
,
2010
, “
Neuralnet: Training of Neural Networks
,”
The R Journal,
2
(
1
), pp.
30
38
. https://journal.r-project.org/archive/2010-1/RJournal_2010-1_Guenther+Fritsch.pdf
40.
Zhang
,
Z.
,
2016
, “
Neural Networks: Further Insights Into Error Function, Generalized Weights and Others
,”
Ann. Transl. Med.
,
4
(
16
), pp.
300
300
.10.21037/atm.2016.05.37
You do not currently have access to this content.