Abstract

To investigate the behavior of components and piping systems subjected to seismic loadings, the maximum restoring forces and maximum deformations of inelastic single-degree-of-freedom (SDOF) systems due to harmonic excitations and seismic floor motions are calculated and presented as diagrams. These systems have restoring forces characterized by a bilinear skeleton curve of a kinematic hardening rule. The diagrams show two types of characteristics, based upon which sinusoidal loadings can be categorized into force- and displacement-controlled loadings, and seismic loadings can be categorized into force- and displacement-dominant loadings, which are newly proposed herein. The characteristics of force- and displacement-dominant loadings are almost equal to those of force- and displacement-controlled loadings, respectively.

References

1.
ASME Boiler & Pressure Vessel Code
,
2015
, The American Society of Mechanical Engineers, Section III, Division 1-Subsection NB, NC, ND, NCA and Appendices.
2.
Pope
,
J. E.
,
1996
,
Rules of Thumb for Mechanical Engineers
,
Gulf Professional Publishing
,
Houston, TX
, p.
208
.
3.
Hamada
,
M.
, and
Kuno
,
M.
,
2016
,
Earthquake Engineering for Nuclear Facilities
,
Springer Publishing, New York
, pp.
97
98
.
4.
Newmark
,
N. M.
, and
Hall
,
W. J.
,
1978
, “
Development of Criteria for Seismic Review of Selected Nuclear Power Plants
,” US-Nuclear Regulatory Commission, Washington, DC, Report No. NUREG/CR-0098.
5.
Krawinkler
,
H.
, and
Nassar
,
A. A.
,
1992
, “
Seismic Design Based on Ductility and Cumulative Damage Demands and Capacities
,”
Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings
,
P.
Fajfar
and
H.
Krawinkler
eds.,
Elsevier Applied Science
,
New York
.
6.
Videc
,
T.
,
Fajfar
,
P.
, and
Fischinger
,
M.
,
1994
, “
Consistent Inelastic Design Spectra: Strength and Displacement
,”
Earthquake Eng. Struct. Dyn.
,
23
(
5
), pp.
507
521
.10.1002/eqe.4290230504
7.
Tamura
,
I.
,
Matsuura
,
S.
, and
Shimazu
,
R.
,
2016
, “
Yield Strength Reduction Factor of Nonlinear SDOF Systems on the Supporting Structures
,”
ASME Paper No. PVP2016-63944
.10.1115/PVP2016-63944
8.
Labbe
,
P.
, et al.,
2003
, “
Seismic Evaluation of Existing Nuclear Power Plants
,” International Atomic Energy Agency, Vienna, Austria, Safety Reports Series No. 28.
9.
Labbe
,
P.
,
Pegon
,
P.
,
Molina
,
J.
,
Gallois
,
C.
, and
Chauvel
,
D.
,
2016
, “
The SAFE Experimental Research on the Frequency Dependence of Shear Wall Seismic Design Margins
,”
J. Earthquake Eng.
,
20
(
1
), pp.
101
128
.10.1080/13632469.2015.1038370
10.
Touboul
,
F.
,
Blay
,
N.
, and
Lacire
,
M. H.
,
1999
, “
Experimental, Analytical, and Regulatory Evaluation of Seismic Behavior of Piping Systems
,”
ASME J. Pressure Vessel Technol.
,
121
(
4
), pp.
388
392
.10.1115/1.2883720
11.
Ranganath, S., 1994, “Piping and Fitting Dynamic Reliability Program,” Report of Electric Power Research Institute, Palo Alto, CA, Report No. EPRI-TR-102792-V1-5.
12.
Suzuki
,
K.
, and
Abe
,
H.
,
2005
, “
Seismic Proving Test of Ultimate Piping Strength (Safety Margin of Seismic Design Code for Piping)
,”
ASME Paper No. PVP2005-71005
.10.1115/PVP2005-71005
13.
Ravikiran
,
A.
,
Dubey
,
P. N.
,
Agrawal
,
M. K.
,
Reddy
,
G. R.
, and
Vaze
,
K. K.
,
2013
, “
Evaluation of Inelastic Seismic Response of a Piping System Using a Modified Iterative Response Spectrum Method
,”
ASME J. Pressure Vessel Technol.
,
135
(
4
), p.
041801
.10.1115/1.4023730
14.
Nakamura
,
I.
,
Shiratori
,
M.
,
Otani
,
A.
,
Morishita
,
M.
,
Shibutani
,
T.
, and
Nakamura
,
H.
,
2015
, “
A Research Activity on the Seismic Safety Evaluation of Nuclear Piping Systems Taking the Effect of Elastic-Plastic Behavior into Account
,”
ASME Paper No. PVP2015-45262
.10.1115/PVP2015-45262
15.
Nuclear standards committee, 2008, “
Technical Code for Seismic Design of Nuclear Power Plants
,”
The Japan Electric Association
,
Tokyo, Japan
, Report No. JEAC4601-2008 (in Japanese).
16.
Labbe
,
P.
, and
Noe
,
H.
,
1992
, “
Ductility and Seismic Design Criteria
,”
Tenth World Conference Earthquake Engineering
,
Madrid, Spain
, July 19–24, pp.
3659
3661
.
17.
Labbe
,
P.
,
2013
, “
Examples of Categorization of Seismic Loads for Civil Engineering and Mechanical Engineering
,”
22nd International Conference on Structural Mechanics in Reactor Technology (SMiRT 22)
,
San Francisco, CA
, Aug. 18–23, Volume
2
, pp.
940
948
.
18.
Labbe
,
P.
,
2017
, “
On Categorization of Seismic Load as Primary or Secondary
,”
ASME Paper No. PVP2017-65300
.10.1115/PVP2017-65300
19.
Tamura
,
I.
,
Matsuura
,
S.
,
Shimazu
,
R.
, and
Kimura
,
K.
,
2018
, “
Categorization of Dynamic Loading into Force-Controlled Loading and Displacement-Controlled Loading
,”
ASME Paper No. PVP2018-85098
.10.1115/PVP2018-85098
20.
Chopra
,
A. K.
,
2011
,
Dynamics of Structures
, 4th ed.,
Prentice Hall
,
Upper Saddle River, NJ
, pp.
222
229
.
21.
Tokyo Electric Power Co., Inc.
,
2007
, “
Acceleration-Time History Waveforms of Niigata-Chuetu-Oki Earthquake Collected at Kashiwazaki-Kariwa Nuclear Power Station (Main Shock and 6 Aftershocks)(DVD)(2007)
,” The Association for Earthquake Disaster Prevention.
22.
Tamura
,
I.
, and
Matsuura
,
S.
,
2017
, “
Evaluation Methods of Elastoplastic Response of Components to Earthquake Motions (Dynamic Analysis of MDOF Systems Using Elastoplastic Response Spectrum)
,”
Trans. JSME
,
83
(
850
), pp.
16
00438
(Japanese).10.1299/transjsme.16-00438
23.
Tamura
,
I.
,
Sakai
,
M.
,
Matsuura
,
S.
,
Shimazu
,
R.
, and
Mabuchi
,
S.
,
2018
, “
Application of Inelastic Response Spectrum Analysis Method to Seismic Response Analysis of Piping Systems
,”
Mechanical Engineering Congress
,
Osaka, Japan
, Sep. 9–12, p.
J1010104
(in Japanese).10.1299/jsmemecj.2018.J1010104
24.
Tamura
,
I.
,
Sakai
,
M.
,
Matsuura
,
S.
,
Shimazu
,
R.
,
Tamashiro
,
H.
, and
Mabuchi
,
S.
,
2019
, “
Seismic Evaluation Method of Piping Systems by Inelastic Response Spectrum Analysis—Part 1: Response Analysis
,”
ASME Paper No. PVP2019-93898
.
25.
Veletsos
,
A. S.
, and
Newmark
,
N. M.
,
1960
, “
Effect of Inelastic Behavior on the Response of Simple Systems to Earthquake Motions
,”
Second World Conference on Earthquake Engineering
,
Tokyo and Kyoto, Japan
, July 11–18, pp.
895
912
.
26.
Tamura
,
I.
,
Matsuura
,
S.
,
Shimazu
,
R.
, and
Kimura
,
K.
,
2017
, “
Acceptance Criterion of Ductile Failure and Plastic Collapse for Safe-Shutdown Earthquakes Using Nonlinear Dynamic Analysis
,”
ASME Paper No. PVP2017-66056
.
27.
Newmark
,
N. M.
,
1977
, “
Inelastic Design of Nuclear Reactor Structures and Its Implication on Design of Critical Equipment
,”
Fourth Conference on Structural Mechanics in Reactor Technology (SMiRT)
,
San Francisco, CA
, June 13.
You do not currently have access to this content.