Abstract
A procedure is described for risk-based seismic performance assessment of pressurized piping systems considering ratcheting. The procedure is demonstrated on a carbon steel piping system considered for OECD-NEA benchmark exercise on quantification of seismic margins. Initially, fragility analysis of the piping system is carried out by considering variability in damping and frequency. Variation in damping is obtained from the statistical analysis of the damping values observed in earlier experiments on piping systems and components. The variation in ground motion is considered by using 20 strong motion records of the intraplate region. Floor motion of a typical reactor building of a nuclear power plant under these actual earthquake records is evaluated and applied to the piping system. The performance evaluation of the piping system in terms of ratcheting is carried out using a numerical approach, which was earlier validated with shake table ratcheting tests on piping components and systems. Three limit states representing performance levels of the piping system under seismic load are considered for fragility evaluation. For each limit state, probability of exceedance at different levels of floor motion is evaluated to generate a fragility curve. Subsequently, the fragility curves of the piping systems are convoluted with hazardous curves for a typical site to obtain the risk in terms of annual probability of occurrence of the performance limits.