Abstract

A procedure is described for risk-based seismic performance assessment of pressurized piping systems considering ratcheting. The procedure is demonstrated on a carbon steel piping system considered for OECD-NEA benchmark exercise on quantification of seismic margins. Initially, fragility analysis of the piping system is carried out by considering variability in damping and frequency. Variation in damping is obtained from the statistical analysis of the damping values observed in earlier experiments on piping systems and components. The variation in ground motion is considered by using 20 strong motion records of the intraplate region. Floor motion of a typical reactor building of a nuclear power plant under these actual earthquake records is evaluated and applied to the piping system. The performance evaluation of the piping system in terms of ratcheting is carried out using a numerical approach, which was earlier validated with shake table ratcheting tests on piping components and systems. Three limit states representing performance levels of the piping system under seismic load are considered for fragility evaluation. For each limit state, probability of exceedance at different levels of floor motion is evaluated to generate a fragility curve. Subsequently, the fragility curves of the piping systems are convoluted with hazardous curves for a typical site to obtain the risk in terms of annual probability of occurrence of the performance limits.

References

1.
ASCE,
2005
, “
Seismic Design Criteria for Structures, Systems and Components in Nuclear Facilities
,” American Society of Civil Engineers, Reston, VA, Standard No.
ASCE/SEI 43-05
.
2.
Kennedy
,
R. P.
,
2011
, “
Performance-Goal Based (Risk Informed) Approach for Establishing the SSE Site Specific Response Spectrum for Future Nuclear Power Plants
,”
Nucl. Eng. Des.
,
241
(
3
), pp.
648
656
.10.1016/j.nucengdes.2010.08.001
3.
USNRC
,
2007
, “
A Performance-Based Approach to Define the Site-Specific Earthquake Ground Motion
,” Regulatory Guide 1.208, U.S. Nuclear Regulatory Commission, Washington, DC.
4.
EPRI,
1994
, “
Piping and Fitting Dynamic Reliability Program: Vol. 3—System Tests Report
,” EPRI, Palo Alto, CA, Report No.
TR-102792-V3
.
5.
Tagart
,
S. W.
, Jr
,
Tang
,
Y. K.
,
Guzy
,
D. J.
, and
Ranganath
,
S.
,
1990
, “
Piping Dynamic Reliability and Code Rule Change Recommendations
,”
Nucl. Eng. Des.
,
123
(
2–3
), pp.
373
385
.10.1016/0029-5493(90)90258-Y
6.
Ravi Kiran
,
A.
,
Reddy
,
G. R.
,
Dubey
,
P. N.
, and
Agrawal
,
M. K.
,
2017
, “
Fatigue-Ratcheting Behavior of 6 in Pressurized Carbon Steel Piping Systems Under Seismic Load: Experiments and Analysis
,”
ASME J. Pressure Vessel Technol.
,
139
(
6
), p.
061801
.10.1115/1.4037809
7.
Ravi Kiran
,
A.
,
Dubey
,
P. N.
,
Agrawal
,
M. K.
,
Reddy
,
G. R.
,
Singh
,
R. K.
, and
Vaze
,
K. K.
,
2015
, “
Experimental and Numerical Studies of Ratcheting in a Pressurized Piping System Under Seismic Load
,”
ASME J. Pressure Vessel Technol.
,
137
(
3
), p.
031011
.10.1115/1.4028619
8.
Ravi Kiran
,
A.
,
Dubey
,
P. N.
,
Agrawal
,
M. K.
,
Reddy
,
G. R.
, and
Vaze
,
K. K.
,
2013
, “
Evaluation of Inelastic Seismic Response of Piping System Using Modified Iterative Response Spectrum Method
,”
ASME J. Pressure Vessel Technol.
,
135
(
4
), p.
041801
.10.1115/1.4023730
9.
EPRI,
1994
, “
Piping and Fitting Dynamic Reliability Program: Vol. 2—Component Tests Report
,” EPRI, Palo Alto, CA, Report No. TR-102792-V2.
10.
Ravi Kiran
,
A.
,
Reddy
,
G. R.
, and
Agrawal
,
M. K.
,
2018
, “
Experimental and Numerical Studies of Inelastic Behavior of Thin Walled Elbow and Tee Joint Under Seismic Load
,”
Thin-Walled Struct.
,
127
, pp.
700
709
.10.1016/j.tws.2018.03.010
11.
Ravi Kiran
,
A.
,
Reddy
,
G. R.
, and
Agrawal
,
M. K.
,
2018
, “
Experimental and Numerical Studies on Inelastic Dynamic Behavior of Stainless Steel Elbow Under Harmonic Base Excitation
,”
ASME J. Pressure Vessel Technol.
,
140
(
2
), p.
021204
.10.1115/1.4039126
12.
ASME
,
2010
, “
ASME Boiler and Pressure Vessel Code, Section III, Division 1
,” The American Society of Mechanical Engineers, New York.
13.
Ju
,
B. S.
, and
Gupta
,
A.
,
2015
, “
Seismic Fragility of Threaded Tee-Joint Connections in Piping Systems
,”
Int. J. Pressure Vessels Piping
,
132–133
, pp.
106
118
.10.1016/j.ijpvp.2015.06.001
14.
Firoozabad
,
E. S.
,
Jeon
,
B. G.
,
Choi
,
H. S.
, and
Kim
,
N. S.
,
2015
, “
Seismic Fragility Analysis of Seismically Isolated Nuclear Power Plants Piping System
,”
Nucl. Eng. Des.
,
284
, pp.
264
279
.10.1016/j.nucengdes.2014.12.012
15.
Sollogoub
,
P.
,
2017
, “
The OECD-NEA Programme on Metallic Component Margins Under High Seismic Loads (MECOS): Towards New Criteria
,”
ASME
Paper No. PVP2017-65516.10.1115/PVP2017-65516
16.
Labbe
,
P. B.
,
Reddy
,
G. R.
,
Mathon
,
C.
,
Moreau
,
F.
, and
Karamanos
,
S. A.
,
2016
, “
The OECD-NEA Programme on Metallic Component Margins Under High Seismic Loads (MECOS)
,”
ASME
Paper No. PVP2016-63119.10.1115/PVP2016-63119
17.
Ravi Kiran
,
A.
,
Reddy
,
G. R.
, and
Agrawal
,
M. K.
,
2019
, “
Seismic Fragility Analysis of Pressurized Piping Systems Considering Ratcheting: A Case Study
,”
Int. J. Pressure Vessels Piping
,
169
, pp.
26
36
.10.1016/j.ijpvp.2018.11.013
18.
Reddy
,
G. R.
,
Kushwaha
,
H. S.
,
Mahajan
,
S. C.
,
Kelkar
,
S. P.
, and
Karandikar
,
G. V.
,
1996
, “
Development of 3-D Beam Model for Seismic Analysis of 500 MWe Reactor Building
,” Bhabha Atomic Research Centre, Mumbai, India, Report No. BARC/1996/I/004.
19.
Ravi Kiran
,
A.
,
Bandopadhyay
,
S.
,
Agrawal
,
M. K.
,
Reddy
,
G. R.
, and
Singh
,
R. K.
,
2015
, “
Generation of Uniform Hazard Response Spectrum for a Peninsular Indian Site
,”
Int. J. Earth Sci. Eng.
,
8
(
2
), pp.
332
335
.
20.
Bhabha Atomic Research Centre
,
2015
, “
Design Basis Seismic Ground Motion for BARC–Vizag Site Based on PSHA
,” Bhabha Atomic Research Centre, Mumbai, India, Report No: GRR/SSES/RSD/110769/2015.
21.
Gopalakrishnan
,
N.
,
Satish Kumar
,
K.
,
Madheswaran
,
C. K.
,
Sreekala
,
R.
,
Rama Rao
,
G. V.
,
Bharathi Priya
,
C.
,
Harish Kumaran
,
S.
,
Prakashvel
,
J.
,
Vasudevan
,
P.
, and
Lakshmikanth
,
G.
,
2015
, “
Multi-Support Excitation Test on Piping System
,” CSIR-SERC, Chennai, India, Report No. SSP 16241.
22.
Bhabha Atomic Research Centre
,
2015
, “
Evaluation of Damping of Pipe Supported on Seismic Supports
,” Bhabha Atomic Research Centre, Mumbai, India, Report No. RSD/SSES/GRR/2015.
23.
Morishita
,
M.
,
Otani
,
A.
,
Watakabe
,
T.
,
Nakamura
,
I.
,
Shibutani
,
T.
, and
Shiratori
,
M.
,
2017
, “
Seismic Qualification of Piping Systems by Detailed Inelastic Response Analysis—Part 1: A Code Case for Piping Seismic Evaluation Based on Detailed Inelastic Response Analysis
,”
ASME
Paper No. PVP2017-65166.10.1115/PVP2017-65166
24.
Otani
,
A.
,
Shibutani
,
T.
,
Morishita
,
M.
,
Nakamura
,
I.
,
Watakabe
,
T.
, and
Shiratori
,
M.
,
2017
, “
Seismic Qualification of Piping Systems by Detailed Inelastic Response Analysis—Part 2: A Guideline for Piping Seismic Inelastic Response Analysis
,”
ASME
Paper No. PVP2017-65190.10.1115/PVP2017-65190
25.
Nakamura
,
I.
,
Otani
,
A.
,
Morishita
,
M.
,
Shiratori
,
M.
,
Watakabe
,
T.
, and
Shibutani
,
T.
,
2017
, “
Seismic Qualification of Piping Systems by Detailed Inelastic Response Analysis—Part 3: Variation in Elastic-Plastic Analysis Results on Carbon Steel Pipes From the Benchmark Analyses and the Parametric Analysis
,”
ASME
Paper No. PVP2017-65316.10.1115/PVP2017-65316
26.
Watakabe
,
T.
,
Nakamura
,
I.
,
Otani
,
A.
,
Morishita
,
M.
,
Shiratori
,
M.
, and
Shibutani
,
T.
,
2017
, “
Seismic Qualification of Piping Systems by Detailed Inelastic Response Analysis—Part 4: Second Round Benchmark Analyses With Stainless Steel Piping Component Test
,”
ASME
Paper No. PVP2017-65324.10.1115/PVP2017-65324
27.
Towashiraporn
,
P.
,
2004
, “
Building Seismic Fragilities Using Response Surface Metamodels
,”
Ph.D. dissertation
, Georgia Institute of Technology, Atlanta, GA.
28.
Zentner
,
I.
,
2010
, “
Numerical Computation of Fragility Curves for NPP Equipment
,”
Nucl. Eng. Des.
,
240
(
6
), pp.
1614
1621
.10.1016/j.nucengdes.2010.02.030
29.
Chaboche
,
J. L.
,
1986
, “
Time-Independent Constitutive Theories for Cyclic Plasticity
,”
Int. J. Plast.
,
2
(
2
), pp.
149
188
.10.1016/0749-6419(86)90010-0
You do not currently have access to this content.