Abstract

This paper focuses on the expansion process of twinning-induced plasticity (TWIP) steel tubular undergoing the large circumferential plastic deformation in expandable tubular technology. The expansion process was performed by propagating a mandrel through the tubular mechanically. This paper aimed at developing the mathematical models to predict the expansion force required for the radial expansion of the TWIP steel tubular using the rigid-perfectly plastic model and the linear hardening rigid plastic model, respectively. The volume incompressible condition together with the Tresca yield criterion was used to describe the plastic behavior of the tubular material in the expansion process. Besides, the finite element analysis of the expansion process was developed using the commercial software abaqus to validate the theoretical results and determine the scope of application of the derived expansion force formula. Further to this, the effect of the process parameters, such as the expansion ratio, friction coefficient and the cone angle, on the expansion force was investigated. It was found that the expansion force difference of two models have similar variation trend. The accuracy and applicability of the expansion force formula using the linear hardening rigid plastic model improve as the expansion ratio increases and the expansion cone angle decreases.

References

1.
Grant
,
T.
, and
Bullock
,
M.
,
2005
, “
The Evolution of Solid Expandable Tubular Technology: Lessons Learned Over Five Years
,”
Offshore Technology Conference
, Houston, TX, May 2–5, Paper No.
17442
.10.4043/17442-MS
2.
Innes
,
G.
,
Craig
,
J.
, and
Lavan
,
S.
,
2003
, “
The Use of Expandable Tubular Technology to Enhance Reservoir Management and Maintain Integrity
,”
Can. Vet. J.
,
3
(
3
), pp.
112
115
.10.4043/15148-MS
3.
Daigle
,
C. L.
,
Campo
,
D. B.
,
Naquin
,
C. J.
,
Cardenas
,
R.
,
Ring
,
L. M.
, and
York
,
P. L.
,
2000
, “
Expandable Tubulars: Field Examples of Application in Well Construction and Remediation
,” SPE Annual Technical Conference and Exhibition, Dallas, TX, Oct. 1–4, Paper No.
SPE-62958-MS
.10.2118/62958-MS
4.
Li
,
T.
,
Gao
,
S.
,
Chen
,
Q.
,
Li
,
Q.
,
Han
,
W.
,
Bi
,
X.
, and
Sun
,
Q.
,
2013
, “
Innovative Design of the Solid Expandable Tubular to Patch the Casing: Area Below the Previously Installed Expandable Tubular
,”
Sixth International Petroleum Technology Conference
, Beijing, China, Mar. 26–28, Paper No.
IPTC-16429-MS
.10.2523/IPTC-16429-MS
5.
Shi
,
L.
,
Wang
,
H.
, and
Ji
,
G.
,
2013
, “
Status, Challenges and New Progress of PetroChina Drilling Engineering Technology
,”
Nat. Gas Ind.
,
33
(
10
), pp.
1
10
.
6.
Al-Abri
,
O. S.
, and
Pervez
,
T.
,
2013
, “
Structural Behavior of Solid Expandable Tubular Undergoes Radial Expansion Process—Analytical, Numerical, and Experimental Approaches
,”
Int. J. Solids Struct.
,
50
(
19
), pp.
2980
2994
.10.1016/j.ijsolstr.2013.05.013
7.
Chen
,
Q.
,
Gao
,
S.
,
Li
,
Y.
,
Li
,
T.
,
Bi
,
X.
,
Han
,
W.
, and
Sun
,
Q.
,
2013
, “
Collapse Strength Study for the Solid Expandable Tubular
,”
Sixth International Petroleum Technology Conference
, Beijing, China, Mar. 26–28, Paper No.
IPTC-16473-MS
.10.2523/IPTC-16473-MS
8.
Al-Abri
,
O. S.
,
Pervez
,
T.
,
Al-Maharbi
,
M. H.
, and
Khan
,
R.
,
2016
, “
Microstructure Evolution of Ultra-Fine Grain Low-Carbon Steel Tubular Undergoing Radial Expansion Process
,”
Mater. Sci. Eng. A
,
654
, pp.
94
106
.10.1016/j.msea.2015.12.016
9.
Cook
,
R. L.
,
Brisco
,
D. P.
,
Stewart
,
B. R.
,
Ring
,
L.
,
Haut
,
R. C.
, and
Mack
,
R. D.
,
2002
, “
Apparatus for Forming Wellbore Casing
,” U.S. Pattern No. US6470966.
10.
Cook
,
R. L.
, and
Ring
,
L.
,
2007
, “
Liner Hanger With Slip Joint Sealing Members and Method of Use
,” US Pattern No. US 7258168 B2.
11.
Seibi
,
A. C.
,
Karrech
,
A.
,
Pervez
,
T.
,
Al-Hiddabi
,
S.
,
Al-Yahmadi
,
A.
, and
Al-Shabibi
,
A.
,
2009
, “
Dynamic Effects of Mandrel/Tubular Interaction on Downhole Solid Tubular Expansion in Well Engineering
,”
ASME J. Energy Resour. Technol.
,
131
(
1
), p.
013101
.10.1115/1.3066412
12.
Pervez
,
T.
,
Seibi
,
A. C.
, and
Karrech
,
A.
,
2006
, “
Analytical Solution for Wave Propagation Due to Pop-Out Phenomenon in Solid Expandable Tubular
,”
Pet. Sci. Technol.
,
24
(
8
), pp.
923
942
.10.1080/10916460500442379
13.
Escobar
,
C.
,
Dean
,
B.
,
Race
,
B.
, and
Waddell
,
K.
,
2003
, “
Increasing Solid Expandable Tubular Technology Reliability in a Myriad of Downhole Environment
s,”
SPE Latin American and Caribbean Petroleum Engineering Conference
, Port-of-Spain, Trinidad and Tobago, Apr. 27–30, Paper No.
SPE-81094-MS
.10.2118/81094-MS
14.
Campo
,
D.
,
Williams
,
C.
,
Filippov
,
A.
,
Cook
,
L.
,
Brisco
,
D.
,
Dean
,
B.
, and
Ring
,
L.
,
2003
, “
Monodiameter Drilling Liner—From Concept to Reality
,” SPE/IADC Drilling Conference, Amsterdam, The Netherlands, Feb. 19–21, SPE/IADC Paper No.
79790
.10.2118/79790-MS
15.
Carstens
,
C.
, and
Strittmatter
,
K.
,
2006
, “
Solid Expandable Tubular Technology: The Value of Planned Installation vs. Contingency
,”
SPE Drill. Completion
,
21
(
4
), pp.
279
286
.10.2118/92622-PA
16.
McKee
,
R.
, Jr., and
Fritsch
,
J.
,
2008
, “
Successful Field-Appraisal Well Makes the Single-Diameter Well Bore a Reality
,”
IADC/SPE Drilling Conference
, Orlando, FL, Mar. 4–6, Paper No. SPE-112755-MS.
17.
Zhang
,
J.
,
2003
, “
Study on the Technical Mechanism of Expansion Pipe in Oil and Gas Wells
,” Doctoral dissertation, Southwest Petroleum University, Sichuan Sheng, China.
18.
Yu
,
G.
,
Wang
,
R.
, and
Tang
,
M.
,
2010
, “
Determination of Expansion Load of Solid Expansion Management Theory
,”
Oil Drill. Prod. Technol.
,
32
(
2
), pp.
1
5
.
19.
Senqing
,
F.
,
Kunzhe
,
W.
,
Lingfan
,
W.
, and
Haiyang
,
S.
,
2012
, “
Theoretical Calculation of Expansion Force in Expansion Pipe Technology
,”
Pet. Mach.
,
40
(
8
), pp.
34
37
.
20.
Zan
,
N.
,
Ding
,
H.
,
Guo
,
X.
,
Tang
,
Z.
, and
Bleck
,
W.
,
2015
, “
Effects of Grain Size on Hydrogen Embrittlement in a Fe-22Mn-0.6C TWIP Steel
,”
Int. J. Hydrogen Energy
,
40
(
33
), pp.
10687
10696
.10.1016/j.ijhydene.2015.06.112
21.
Luo
,
Y.
,
Jiang
,
W.
,
Wan
,
Y.
,
Woo
,
W.
, and
Tu
,
S.-T.
,
2018
, “
Effect of Helix Angle on Residual Stress in the Spiral Welded Oil Pipelines: Experimental and Finite Element Modeling
,”
Int. J. Pressure Vessels Piping
,
168
, pp.
233
245
.10.1016/j.ijpvp.2018.10.015
22.
Jiang
,
W.
,
Wei
,
C.
,
Woo
,
W.
,
Tu
,
S. T.
,
Zhang
,
X. C.
, and
Em
,
V.
,
2018
, “
Effects of Low-Temperature Transformation and Transformation-Induced Plasticity on Weld Residual Stresses: Numerical Study and Neutron Diffraction Measurement
,”
Mater. Des.
,
147
, pp.
65
79
.10.1016/j.matdes.2018.03.032
You do not currently have access to this content.