Abstract

This paper carries out the limit and shakedown analysis of 45 deg piping elbows made up of elastic–perfectly plastic materials by means of the recently proposed stress compensation method (SCM). The elbows are subjected to steady internal pressure and cyclic in-plane closing, opening, and reversed bending moments. Different geometries of the piping elbows and various combinations of these applied loads are investigated to generate various plastic limit and shakedown limit load interaction curves. The plastic limit bending moment and plastic limit internal pressure calculated with the SCM are compared to those determined by the twice-elastic-slope approach. Full step-by-step (SBS) elastic–plastic incremental finite element analysis (FEA) is utilized to verify the structural cyclic responses on both sides of the curves obtained and further to confirm the correct shakedown limit loads and boundaries. It is shown that the SCM calculates the shakedown limit load accurately and possesses about 40 times the computation efficiency of the SBS elastic–plastic incremental method. The effects of the ratios of mean radius to wall thickness and bending radius to mean radius of the piping elbow as well as the loading conditions on the plastic limit and shakedown limit load interaction curves are presented. The results presented in this work give a comprehensive understanding of long-term response behaviors of the piping elbow subjected to cyclic loadings and provide some guidance for the design and integrity assessment of piping systems.

References

1.
Calladine
,
C. R.
,
1974
, “
Limit Analysis of Curved Tubes
,”
J. Mech. Eng. Sci.
,
16
(
2
), pp.
85
87
.10.1243/JMES_JOUR_1974_016_016_02
2.
Goodall
,
I. W.
,
1978
, “
Lower Bound Limit Analysis of Curved Tubes Loaded by Combined Internal Pressure and In-Plane Bending Moment
,” Central Electricity Generation Board, London, UK, Report No. RD/B/N4360.
3.
Chattopadhyay
,
J.
,
Nathani
,
D. K.
,
Dutta
,
B. K.
, and
Kushwaha
,
H. S.
,
2000
, “
Closed-Form Collapse Moment Equations of Elbows Under Combined Internal Pressure and In-Plane Bending Moment
,”
ASME J. Pressure Vessel Technol.
,
122
(
4
), pp.
431
436
.10.1115/1.1285988
4.
Robertson
,
A.
,
Li
,
H. J.
, and
Mackenzie
,
D.
,
2005
, “
Plastic Collapse of Pipe Bends Under Combined Internal Pressure and In-Plane Bending
,”
Int. J. Pressure Vessels Piping
,
82
(
5
), pp.
407
416
.10.1016/j.ijpvp.2004.09.005
5.
Kim
,
Y. J.
, and
Oh
,
C. S.
,
2006
, “
Limit Loads for Pipe Bends Under Combined Pressure and In-Plane Bending Based on Finite Element Limit Analysis
,”
Int. J. Pressure Vessels Piping
,
83
(
2
), pp.
148
153
.10.1016/j.ijpvp.2005.11.001
6.
Kim
,
Y. J.
, and
Oh
,
C. S.
,
2007
, “
Effects of Attached Straight Pipes on Finite Element Limit Analysis for Pipe Bends
,”
Int. J. Pressure Vessels Piping
,
84
(
3
), pp.
177
184
.10.1016/j.ijpvp.2006.09.017
7.
Li
,
J.
,
Zhou
,
C.-Y.
,
Xue
,
J.-L.
, and
He
,
X.-H.
,
2014
, “
Limit Loads for Pipe Bends Under Combined Pressure and Out-of-Plane Bending Moment Based on Finite Element Analysis
,”
Int. J. Mech. Sci.
,
88
, pp.
100
109
.10.1016/j.ijmecsci.2014.07.012
8.
Li
,
S. J.
,
Zhou
,
C. Y.
,
Li
,
J.
,
Pan
,
X. M.
, and
He
,
X. H.
,
2017
, “
Effect of Bend Angle on Plastic Limit Loads of Pipe Bends Under Different Load Conditions
,”
Int. J. Mech. Sci.
,
131
, pp.
572
585
.10.1016/j.ijmecsci.2017.08.019
9.
Abdalla
,
H. F.
,
Megahed
,
M. M.
, and
Younan
,
M. Y.
,
2007
, “
Shakedown Limits of a 90-Degree Pipe Bend Using Small and Large Displacement Formulations
,”
ASME J. Pressure Vessel Technol.
,
129
(
2
), pp.
287
295
.10.1115/1.2716433
10.
Oh
,
C.-S.
,
Kim
,
Y.-J.
, and
Park
,
C.-Y.
,
2008
, “
Shakedown Limit Loads for Elbows Under Internal Pressure and Cyclic In-Plane Bending
,”
Int. J. Pressure Vessels Piping
,
85
(
6
), pp.
394
405
.10.1016/j.ijpvp.2007.11.009
11.
Korba
,
A. G.
,
Megahed
,
M. M.
,
Abdalla
,
H. F.
, and
Nassar
,
M. M.
,
2013
, “
Shakedown Analysis of 90-Degree Mitred Pipe Bends
,”
Eur. J. Mech.-A
,
40
, pp.
158
165
.10.1016/j.euromechsol.2013.01.006
12.
Abdalla
,
H. F.
,
2014
, “
Shakedown Boundary Determination of a 90° Back-to-Back Pipe Bend Subjected to Steady Internal Pressures and Cyclic In-Plane Bending Moments
,”
Int. J. Pressure Vessels Piping
,
116
, pp.
1
9
.10.1016/j.ijpvp.2014.01.001
13.
Liu
,
Y. H.
,
Cen
,
Z. Z.
, and
Xu
,
B. Y.
,
1995
, “
A Numerical-Method for Plastic Limit Analysis of 3-D Structures
,”
Int. J. Solids Struct.
,
32
(
12
), pp.
1645
1658
.10.1016/0020-7683(94)00230-T
14.
Mackenzie
,
D.
, and
T Boyle
,
J.
,
2000
, “
Elastic Compensation Method for Limit and Shakedown Analysis: A Review
,”
J. Strain Analysis
,
35
(3), pp. 171–188.10.1243/0309324001514332
15.
Chen
,
H. F.
, and
Ponter
,
A. R. S.
,
2001
, “
Shakedown and Limit Analyses for 3-D Structures Using the Linear Matching Method
,”
Int. J. Pressure Vessels Piping
,
78
(
6
), pp.
443
451
.10.1016/S0308-0161(01)00052-7
16.
Ponter
,
A. R. S.
, and
Carter
,
K. F.
,
1997
, “
Shakedown State Simulation Techniques Based on Linear Elastic Solutions
,”
Comput. Methods Appl. Mech. Eng.
,
140
(
3–4
), pp.
259
279
.10.1016/S0045-7825(96)01105-X
17.
Spiliopoulos
,
K. V.
, and
Panagiotou
,
K. D.
,
2014
, “
A Residual Stress Decomposition Based Method for the Shakedown Analysis of Structures
,”
Comput. Methods Appl. Mech. Eng.
,
276
, pp.
410
430
.10.1016/j.cma.2014.03.019
18.
Seshadri
,
R.
,
1995
, “
Inelastic Evaluation of Mechanical and Structural Components Using the Generalized Local Stress Strain Method of Analysis
,”
Nucl. Eng. Des.
,
153
(
2–3
), pp.
287
303
.10.1016/0029-5493(95)90020-9
19.
Peng
,
H.
,
Liu
,
Y.
, and
Chen
,
H.
,
2019
, “
A Numerical Formulation and Algorithm for Limit and Shakedown Analysis of Large-Scale Elastoplastic Structures
,”
Comput. Mech.
,
63
(
1
), pp.
1
22
.10.1007/s00466-018-1581-x
20.
Peng
,
H.
,
Liu
,
Y.
,
Chen
,
H.
, and
Shen
,
J.
,
2018
, “
Shakedown Analysis of Engineering Structures Under Multiple Variable Mechanical and Thermal Loads Using the Stress Compensation Method
,”
Int. J. Mech. Sci.
,
140
, pp.
361
375
.10.1016/j.ijmecsci.2018.03.020
21.
Barbera
,
D.
,
Chen
,
H.
,
Liu
,
Y.
, and
Xuan
,
F.
,
2017
, “
Recent Developments of the Linear Matching Method Framework for Structural Integrity Assessment
,”
ASME J. Pressure Vessel Technol.
,
139
(
5
), p.
051101
.10.1115/1.4036919
22.
Chen
,
H. F.
,
Ure
,
J.
,
Li
,
T. B.
,
Chen
,
W. H.
, and
Mackenzie
,
D.
,
2011
, “
Shakedown and Limit Analysis of 90 Degree Pipe Bends Under Internal Pressure, Cyclic In-Plane Bending and Cyclic Thermal Loading
,”
Int. J. Pressure Vessels Piping
,
88
(
5–7
), pp.
213
222
.10.1016/j.ijpvp.2011.05.003
23.
Cho
,
N.-K.
, and
Chen
,
H.
,
2018
, “
Shakedown, Ratchet, and Limit Analyses of 90° Back-to-Back Pipe Bends Under Cyclic In-Plane Opening Bending and Steady Internal Pressure
,”
Eur. J. Mech. A
,
67
(
Suppl. C
), pp.
231
242
.10.1016/j.euromechsol.2017.10.002
24.
Melan
,
E.
,
1938
, “
Zur Plastizität Des Räumlichen Kontinuums
,”
Ing.-Arch.
,
9
(
2
), pp.
116
126
.10.1007/BF02084409
25.
Dassault Systems
,
2014
, “
ABAQUS, Version 6.14
,”
Dassault Systems
, France.
You do not currently have access to this content.