Abstract

An innovative yield criterion based on von Mises stress is proposed to represent the strain rate-dependent behavior under dynamic load. Considering the strain rate in the constitutive model, the distortional strain energy density is derived and the yield criterion is established. A plot of yield strength for a range of strain rate reveals that despite the differences in material properties and test methods, the yield strength rise can be represented by a unified criterion. The overall yield behavior of the material under dynamic load can be explained by introducing the strain rate into the constitutive model and threshold distortional strain energy density. This criterion is in a simple form that may be widely applied.

References

1.
Tanimura
,
S.
,
Tsuda
,
T.
,
Abe
,
A.
,
Hayashi
,
H.
, and
Jones
,
N.
,
2014
, “
Comparison of Rate-Dependent Constitutive Models With Experimental Data
,”
Int. J. Impact Eng.
,
69
, pp.
104
113
.10.1016/j.ijimpeng.2014.01.006
2.
Zhang
,
D.
,
Fei
,
Q.
, and
Zhang
,
P.
,
2017
, “
Drop-Weight Impact Behavior of Honeycomb Sandwich Panels Under a Spherical Impactor
,”
Compos. Struct.
,
168
, pp.
633
645
.10.1016/j.compstruct.2017.02.053
3.
Kwon
,
Y. W.
,
Esmaeili
,
Y.
, and
Park
,
C. M.
,
2011
, “
Stress-Strain Behavior of an Aluminum Alloy Under Transient Strain-Rates
,”
ASME J. Pressure Vessel Technol.
,
133
(
4
), p.
044501
.10.1115/1.4003470
4.
Li
,
T.
,
Fan
,
D.
,
Lu
,
L.
,
Huang
,
J. Y.
,
E
,
J. C.
,
Zhao
,
F.
,
Qi
,
M. L.
,
Sun
,
T.
,
Fezzaa
,
K.
,
Xiao
,
X. H.
,
Zhou
,
X. M.
,
Suo
,
T.
,
Chen
,
W.
,
Li
,
Y. L.
,
Zhu
,
M. H.
, and
Luo
,
S. N.
,
2015
, “
Dynamic Fracture of C/SiC Composites Under High Strain-Rate Loading: Microstructures and Mechanisms
,”
Carbon
,
91
, pp.
468
478
.10.1016/j.carbon.2015.05.015
5.
Zhang
,
D.
, and
Fei
,
Q.
,
2016
, “
Effect of Bird Geometry and Impact Orientation in Bird Striking on a Rotary Jet-Engine Fan Analysis Using SPH Method
,”
Aerosp. Sci. Technol.
,
54
, pp.
320
329
.10.1016/j.ast.2016.05.003
6.
Mises
,
R. V.
,
1913
, “
Mechanik Der Festen Körper im Plastisch Deformablen Zustand
,”
Nachr. Von Der Königlichen Gesellschaft Der Wissenschaften zu Göettinger, Mathematisch-Physikalische Klasse
, pp.
582
592
(in German).
7.
Armstrong
,
R. W.
, and
Walley
,
S. M.
,
2008
, “
High Strain Rate Properties of Metals and Alloys
,”
Int. Mater. Rev.
,
53
(
3
), pp.
105
128
.10.1179/174328008X277795
8.
Gurusideswar
,
S.
,
Velmurugan
,
R.
, and
Gupta
,
N. K.
,
2017
, “
Study of Rate Dependent Behavior of Glass/Epoxy Composites With Nanofillers Using Non-Contact Strain Measurement
,”
Int. J. Impact Eng.
,
110
, pp.
324
337
.10.1016/j.ijimpeng.2017.05.013
9.
Gerlach
,
R.
,
Siviour
,
C. R.
,
Petrinic
,
N.
, and
Wiegand
,
J.
,
2008
, “
Experimental Characterisation and Constitutive Modelling of RTM-6 Resin Under Impact Loading
,”
Polymers
,
49
(
11
), pp.
2728
2737
.10.1016/j.polymer.2008.04.018
10.
Goldberg
,
R. K.
, and
Stouffer
,
D. C.
,
2002
, “
Strain Rate Dependent Analysis of a Polymer Matrix Composite Utilizing a Micromechanics Approach
,”
J. Compos. Mater.
,
36
(
7
), pp.
773
793
.10.1177/0021998302036007613
11.
Castres
,
M.
,
Berthe
,
J.
,
Brieu
,
M.
, and
Deletombe
,
E.
,
2018
, “
A Strain Rate and Temperature Dependent Criterion to Describe the Linear—Nonlinear Behaviour's Transition of Organic Matrix Composite Materials in Shear: Application to T700GC/M21
,”
Mech. Mater.
,
124
, pp.
100
105
.10.1016/j.mechmat.2018.06.002
12.
Daniel
,
I. M.
,
Werner
,
B. T.
, and
Fenner
,
J. S.
,
2011
, “
Strain-Rate-Dependent Failure Criteria for Composites
,”
Compos. Sci. Technol.
,
71
(
3
), pp.
357
364
.10.1016/j.compscitech.2010.11.028
13.
Raimondo
,
L.
,
Iannucci
,
L.
,
Robinson
,
P.
, and
Curtis
,
P.
,
2012
, “
Modelling of Strain Rate Effects on Matrix Dominated Elastic and Failure Properties of Unidirectional Fibre-Reinforced Polymer-Matrix Composites
,”
Compos. Sci. Technol.
,
72
(
7
), pp.
819
827
.10.1016/j.compscitech.2012.02.011
14.
Tao
,
Y.
,
Chen
,
H.
,
Yao
,
K.
,
Lei
,
H.
,
Pei
,
Y.
, and
Fang
,
D.
,
2017
, “
Experimental and Theoretical Studies on Inter-Fiber Failure of Unidirectional Polymer-Matrix Composites Under Different Strain Rates
,”
Int. J. Solids Struct.
,
113
, pp.
37
46
.10.1016/j.ijsolstr.2016.11.014
15.
Kwon
,
Y. W.
, and
Tan
,
K. S.
,
2011
, “
Failure of Ductile Materials Subject to Varying Strain Rates
,”
ASME J. Pressure Vessel Technology
,
133
(
1
), p.
011402
.10.1115/1.4002054
16.
Sung
,
J. H.
,
Kim
,
J. H.
, and
Wagoner
,
R. H.
,
2010
, “
A Plastic Constitutive Equation Incorporating Strain, Strain-Rate, and Temperature
,”
Int. J. Plast.
,
26
(
12
), pp.
1746
1771
.10.1016/j.ijplas.2010.02.005
17.
Du
,
X.
,
Zhang
,
Q.
, and
Wan
,
Z.
,
1995
, “
A Nonlinear Constitutive Model for Rayon-Rubber Composite in the Medium Strain Rate Range
,”
J. Elastomers Plast.
,
27
(
1
), pp.
91
99
.10.1177/009524439502700107
18.
Okoli
,
O. I.
, and
Smith
,
G. F.
,
2000
, “
The Effect of Strain Rate and Fibre Content on the Poisson's Ratio of Glass/Epoxy Composites
,”
Compos. Struct.
,
48
(
1–3
), pp.
157
161
.10.1016/S0263-8223(99)00089-6
19.
Das
,
A.
,
Biswas
,
P.
,
Tarafder
,
S.
,
Chakrabarti
,
D.
, and
Sivaprasad
,
S.
,
2018
, “
Effect of Strengthening Mechanism on Strain-Rate Related Tensile Properties of Low-Carbon Sheet Steels for Automotive Application
,”
J. Mater. Eng. Perform.
,
7
, pp.
1
14
.10.1007/s11665-018-3405-8
20.
Fitoussi
,
J.
,
Bocquet
,
M.
, and
Meraghni
,
F.
,
2013
, “
Effect of the Matrix Behavior on the Damage of Ethylene–Propylene Glass Fiber Reinforced Composite Subjected to High Strain Rate Tension
,”
Compos. Part B: Eng.
,
45
(
1
), pp.
1181
1191
.10.1016/j.compositesb.2012.06.011
21.
Shokrieh
,
M. M.
, and
Omidi
,
M. J.
,
2009
, “
Tension Behavior of Unidirectional Glass/Epoxy Composites Under Different Strain Rates
,”
Compos. Struct.
,
88
(
4
), pp.
595
601
.10.1016/j.compstruct.2008.06.012
You do not currently have access to this content.