Abstract

In this paper, numerical formulations are presented; these permit full thermal simulation of an arbitrary plane axisymmetric residual stress field encompassing hoop, radial, and axial stresses. Earlier formulations were based upon the determination of a temperature profile within the tube that could only replicate radial and hoop stresses; in general, axial stresses were incorrect. This new thermal simulation provides all three stresses and is achieved by incorporating orthotropic coefficients of thermal expansion that themselves vary with radius. Results are generally highly accurate. Crucial near-bore hoop and axial stresses can be replicated within 1%. Near-bore behavior is discussed in detail. These formulations will permit subsequent determination of stress intensity factors (SIF) for arbitrarily orientated cracks within pressure vessels in the presence of pre-existing residual stresses. Note that these thermal solutions mimic known, residual stress profiles; they do not predict residual stress profiles.

References

References
1.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
,
1970
,
Theory of Elasticity
, 3rd ed.,
McGraw-Hill
,
New York
.
2.
Jahed
,
H.
, and
Dubey
,
R. N.
,
1997
, “
An Axisymmetric Method of Elastic-Plastic Analysis Capable of Predicting Residual Stress Field
,”
ASME J. Pressure Vessel Technol.
,
119
(
3
), pp.
264
273
.10.1115/1.2842303
3.
Parker
,
A. P.
,
2001
, “
Autofrettage of Open End Tubes—Pressures, Stresses, Strains and Code Comparisons
,”
ASME J. Pressure Vessel Technol.
,
123
(
3
), pp.
271
281
.10.1115/1.1359209
4.
Bauschinger
,
J.
,
1881
, “
Ueber Die Veränderung Der Elasticitätsgrenze Und Des Elasticitätsmoduls Verschiedener Metalle
,”
Zivilingenieur
, Vol.
27
, Column pp.
289
348
.
5.
ASME International Boiler and Pressure Vessel Code
,
2013
, “
Alternative Rules for Construction of High Pressure Vessels
,” American Society of Mechanical Engineers, New York.
6.
Perl
,
M.
, and
Perry
,
J.
,
2006
, “
An Experimental-Numerical Determination of the Three Dimensional Autofrettage Residual Stress Field Incorporating Bauschinger Effect
,”
ASME J. Pressure Vessel Technol.
,
128
(
2
), pp.
173
178
.10.1115/1.2172959
7.
Parker
,
A. P.
, and
Farrow
,
J. R.
,
1980
, “
On the Equivalence of Axi-Symmetric Bending, Thermal and Autofrettage Residual Stress Fields
,”
J. Strain Anal.
,
15
(
1
), pp.
51
52
.10.1243/03093247V151051
8.
Pu
,
S. L.
, and
Hussain
,
M. A.
,
1983
, “
Stress Intensity Factors for Radial Cracks in a Partially Autofrettaged Thick-Wall Cylinder
,”
American Society for Testing and Materials
, West Conshohocken, PA, Standard No. ASTM STP 791.
9.
Hill
,
R.
,
1950
,
The Mathematical Theory of Plasticity
,
Oxford University Press
,
Oxford, UK
.
10.
Chakrabarty
,
J.
,
1987
,
Theory of Plasticity
,
McGraw-Hill
,
New York
.
11.
Perl
,
M.
,
1988
, “
The Temperature Field for Simulating Partial Autofrettage in an Elasto-Plastic Thick-Walled Cylinder
,”
ASME J. Pressure Vessel Technol.
,
110
(
1
), pp.
100
102
.10.1115/1.3265552
12.
Parker
,
A. P.
,
2006
, “
An Improved Method for Recovering Residual Stress From Strain Measurements in Cylinders and Rings
,”
ASME
Paper No. PVP2006-ICPVT11-93758.10.1115/PVP2006-ICPVT-11-93758
13.
Perl
,
M.
,
Levy
,
C.
, and
Rallabhandy
,
V.
,
2006
, “
The Influence of the Bauschinger Effect on 3-D Stress Intensity Factors for a Radially Cracked Autofrettaged Thick-Walled Cylinder
,”
ASME J. Pressure Vessel Technol
.,
128
, pp.
233
239
.
14.
Levy
,
C.
,
Perl
,
M.
, and
Kotagiri
,
S.
,
2006
, “
The Influence of the Bauschinger Effect on the Combined Stress Intensity Factors of Multiple Longitudinally Coplanar Cracks in Autofrettaged Pressurized Cylinders
,”
ASME
Paper No. PVP2006-ICPVT-11-93037. 10.1115/PVP2006-ICPVT-11-93037
15.
Noda
,
N.
,
Hetnarski
,
R. B.
, and
Tanigawa
,
Y.
,
2002
,
Thermal Stresses
,
Taylor & Francis Group
,
Routledge, NY
.
16.
Perl
,
M.
, and
Saley
,
T.
,
2017
, “
Swage and Hydraulic Autofrettage: Impact on Fracture Endurance and Fatigue Life of an Internally Cracked Smooth Gun Barrel Part I—The Effect of Overstraining
,”
Eng. Fract. Mech.
,
182
, pp.
372
385
.10.1016/j.engfracmech.2017.05.022
17.
Perry
,
J.
,
Perl
,
M.
,
Shneck
,
R.
, and
Haroush
,
S.
,
2006
, “
The Influence of the Bauschinger Effect on Yield Stress, Young's Modulus and Poisson's Ratio of a Gun Barrel Steel
,”
ASME J. Pressure Vessel Technol.
,
128
(
2
), pp.
179
184
.10.1115/1.2172962
18.
Davidson
,
T. E.
,
Kendall
,
D. P.
, and
Reiner
,
A. N.
,
1963
, “
Residual Stresses in Thick-Walled Cylinders Resulting From Mechanically Induced Overstrain
,”
Exp. Mech.
,
3
(
11
), pp.
253
262
.10.1007/BF02325841
19.
Hu
,
Z.
, and
Parker
,
A. P.
,
2019
, “
Swage Autofrettage Analysis—Current Status and Future Prospects
,”
Int. J. Pressure Vessels Piping
,
171
, pp.
233
241
.10.1016/j.ijpvp.2019.03.007
20.
Prime
,
M. B.
,
2011
, “
Contour Method Advanced Applications: Hoop Stresses in Cylinders and Discontinuities
,”
Engineering Applications of Residual Stress
, Vol.
8
,
T.
Proulx
, ed.,
Springer
,
New York
, pp.
13
28
.
You do not currently have access to this content.