Abstract

Pipelines are used to provide variety of services in modern community and have grown rapidly in past few decades due to growing socio-economic requirements. Most of the water mains are buried in shallow depths where the soil is partially saturated with significant spatial and temporal variations. Even though the behavior of buried pipes in such unsaturated soil condition is substantially different when compared to dry or fully saturated soil, the effect of soil saturations is overlooked in the current pipe stress prediction methods, leading to unrealistic predictions of the pipe stresses. In this study, three-dimensional (3D) finite element (FE) method was employed with advanced constitutive soil models to analyze the behavior of pipes buried in unsaturated soil condition. Having validated the FE model using reported field test data, an analytical model was proposed to predict the maximum stress in buried pipes considering soil saturation effect using a series of 3D FE analyses. Results from the FE analyses reveal that the maximum pipe stress can be significantly different when soil is in unsaturated condition when compared to dry condition. The proposed formula shows a good agreement with the field data and FE results, so that the expression can be used in the prediction of maximum pipe stress when they are buried under realistic (i.e., nondry) soil conditions.

References

References
1.
Petersen
,
R. B.
, and
Melchers
,
R. E.
,
2012
, “
Long-Term Corrosion of Cast Iron Cement Lined Pipes
,”
Annual Conference of the Australasian Corrosion Association 2012
, Melbourne, Australia, Nov. 11–14, pp.
146
157
.
2.
Robert
,
D. J.
,
Rajeev
,
P.
,
Kodikara
,
J.
, and
Rajani
,
B.
,
2016
, “
An Equation to Predict Maximum Pipe Stress Incorporating Internal and External Loadings on Buried Pipes
,”
Can. Geotech. J.
,
53
(
8
), pp.
1
45
.https://www.nrcresearchpress.com/doi/10.1139/cgj-2015-0500#.XYdsNygzZPY
3.
Rajani
,
B.
, and
Kleiner
,
Y.
,
2001
, “
Comprehensive Review of Structural Deterioration of Water Mains: Physically Based Models
,”
Urban Water
,
3
(
3
), pp.
151
164
.10.1016/S1462-0758(01)00032-2
4.
Forsyth
,
P.
,
Robert
,
D. J.
,
Rajeev
,
P.
,
Li
,
C. Q.
, and
Kodikara
,
J.
,
2014
, “
Codified Methods to Analyse the Failures of Water Pipelines: A Review
,”
Eighth Australasian Congress on Applied Mechanics as Part of Engineers Australia Convention 2014
, Melbourne, Australia, Nov. 23–26, pp.
529
539
.
5.
NWC,
2014
, “
National Performance Report 2012–13: Urban Water Utilities
,”
National Water Commission
,
Canberra, Australia
.
6.
Ji
,
J.
,
Robert
,
D. J.
,
Zhang
,
C.
,
Zhang
,
D.
, and
Kodikara
,
J.
,
2016
, “
Probabilistic Physical Modelling of Corroded Cast Iron Pipes for Lifetime Prediction
,”
Struct. Saf.
,
64
, pp.
62
75
.10.1016/j.strusafe.2016.09.004
7.
Chen
,
Y.
,
Li
,
X.
,
Chai
,
Y. H.
, and
Zhou
,
J.
,
2010
, “
Assessment of the Flexural Capacity of Corroded Steel Pipes
,”
Int. J. Pressure Vessels Piping
,
87
(
2–3
), pp.
100
110
.10.1016/j.ijpvp.2009.12.005
8.
Keshtegar
,
B.
, and
Miri
,
M.
,
2014
, “
Reliability Analysis of Corroded Pipes Using Conjugate HL–RF Algorithm Based on Average Shear Stress Yield Criterion
,”
Eng. Failure Anal.
,
46
, pp.
104
117
.10.1016/j.engfailanal.2014.08.005
9.
Spangler
,
M. G.
,
1941
, “
The Structural Design of Flexible Pipe Culverts
,” Bulletin 135, Engineering Experiment Station, Ames, Iowa, pp.
1
85
.
10.
Watkins
,
R. K.
, and
Anderson
,
L. R.
,
1999
,
Structural Mechanics of Buried Pipes
,
CRC Press
, New York.
11.
Merrin
,
J.
,
Hung
,
H. P.
,
Rajeev
,
P.
,
Robert
,
D. J.
, and
Kodikara
,
J.
,
2015
, “
Stress Analysis of Buried Pipes
,”
Eighth Australasian Congress on Applied Mechanics 2014
(ACAM 8), Barton, Australia, Nov. 23–26, pp.
510
518
.
12.
Warman
,
D. J.
,
Hart
,
J. D.
, and
Francini
,
R. B.
,
2009
, “
Development of a Pipeline Surface Loading Screenin Process and Assessment of Surface Load Dispersing Methods
,”
Canadian Energy Pipeline Association
,
Worthington, OH
, Report No. 05-44R1.
13.
Taylor
,
M. E.
, and
Lawrence
,
G. J. L.
,
1985
, “
Measuring the Effects of Traffic-Induced Stresses on a Small-Diameter Pipeline
,”
Pipes Pipelines Int.
,
30
(
2
), pp.
15
19
.https://www.researchgate.net/publication/297091756_MEASURING_THE_EFFECTS_OF_TRAFFIC-INDUCED_STRESSES_ON_A_SMALL-DIAMETER_PIPELINE
14.
Robert
,
D. J.
, and
Soga
,
K.
,
2013
, “
Soil-Pipeline Interaction in Unsaturated Soils
,”
Mechanics of Unsaturated Geomaterials
,
Wiley
, Hoboken, NJ, pp.
303
325
.
15.
Robert
,
D. J.
,
2010
, “
Soil-Pipeline Interaction in Unsaturated Soils
,” Ph.D. thesis, Churchill College, University of Cambridge, Cambridge, UK.
16.
Saadeldin
,
R.
,
Hu
,
Y.
,
Siddiqua
,
S.
, and
Henni
,
A.
,
2013
, “
Response of Buried Pipes to Unsaturated Soil Conditions
,”
Pipelines 2013 Conference: Pipelines and Trenchless Construction and Renewals—A Global Perspective
, Fort Worth, TX, June 23–26, pp.
462
473
.
17.
Jai
,
K. J.
,
Thomas
,
D. O. R.
, and
Nathaniel
,
A. O.
,
2013
, “
Lateral Soil-Pipe Interaction in Dry and Partially Saturated Sand
,”
J. Geotech. Geoenviron. Eng.
,
139
(
12
), pp.
2028
2036
.10.1061/(ASCE)GT.1943-5606.0000960
18.
Saadeldin
,
R.
,
Hu
,
Y.
, and
Henni
,
A.
,
2015
, “
Numerical Analysis of Buried Pipes Under Field Geo-Environmental Conditions
,”
Int. J. Geo-Eng.
,
6
(
1
), pp.
1
22
.https://link.springer.com/article/10.1186/s40703-015-0005-4
19.
Jung
,
J. K.
,
O'Rourke
,
T. D.
, and
Argyrou
,
C.
,
2016
, “
Multi-Directional Force–Displacement Response of Underground Pipe in Sand
,”
Can. Geotech. J.
,
53
(
11
), pp.
1763
1781
.10.1139/cgj-2016-0059
20.
Olson
,
N. A.
,
2009
, “
Soil Performance for Large Scale Soil-Pipeline Tests
,” Ph.D. thesis, Faculty of the Graduate School, Cornell University, New York.
21.
Robert
,
D. J.
,
Soga
,
K.
, and
O'Rourke
,
T. D.
,
2016
, “
Pipelines Subjected to Fault Movement in Dry and Unsaturated Soils
,”
Int. J. Geomech.
,
16
(
5
), p.
C4016001
.10.1061/(ASCE)GM.1943-5622.0000548
22.
Robert
,
D. J.
,
Soga
,
K.
,
O'Rourke
,
T.
, and
Sakanoue
,
T.
,
2016
, “
Lateral Load-Displacement Behaviour of Pipelines in Unsaturated Sands
,”
J. Geotech. Geoenviron. Eng.
,
142
(
11
), pp.
1
14
.10.1061/(ASCE)GT.1943-5606.0001504
23.
Been
,
K.
, and
Jefferies
,
M. G.
,
1985
, “
State Parameter for Sands
,”
Geotechnique
,
35
(
2
), pp.
99
112
.10.1680/geot.1985.35.2.99
24.
Fern
,
E.
,
Robert
,
D. J.
, and
Soga
,
K.
,
2016
, “
Modeling the Stress-Dilatancy Relationship of Unsaturated Silica Sand in Triaxial Compression Tests
,”
J. Geotech. Geoenviron. Eng.
,
142
(
11
), pp.
1
15
.10.1061/(ASCE)GT.1943-5606.0001546
25.
Smithells
,
C. J.
,
1984
,
Metal Reference Book
,
7th ed.
,
Butterworth-Heinemann
, Oxford, UK.
26.
Potyondy
,
J. G.
,
1961
, “
Skin Friction Between Various Soils and Construction Materials
,”
Géotechnique
,
11
(
4
), pp.
339
353
.10.1680/geot.1961.11.4.339
27.
Moser
,
A. P.
, and
Folkman
,
S.
,
2008
,
Buried Pipe Design
,
3rd ed.
,
The McGraw-Hill Companies
, New York.
28.
Young
,
O. C.
, and
Trott
,
J. J.
,
1984
,
Buried Rigid Pipes: Structural Design of Pipelines
,
Elsevier
,
London
.
29.
Marston
,
A.
, and
Anderson
,
A. O.
,
1913
, “
The Theory of Loads on Pipes in Ditches and Tests of Cement and Clay Drain Tile and Sewer Pipe
,” Bulletin 31, Engineering Experiment Station, Ames, Iowa.
30.
Warman
,
D. J.
,
Chorney
,
J.
,
Reed
,
M.
, and
Hart
,
J. D.
,
2007
, “
Development of a Pipeline Surface Loading Screening Process
,”
Sixth International Pipeline Conference
(IPC 2006), Calgary, AB, Sept. 25–29, pp.
803
814
.
You do not currently have access to this content.