Abstract

In this article, a test method to determine the tube material properties and two methods to calculate the final hydraulic forming pressure of corrugated tubes are presented based on the plastic incremental theory. Numerical simulation and hydroforming experiment are carried out to demonstrate the reasonability of these methods. Simulation results show that tube force state during corrugated tube hydroforming is similar to that during tube local free hydraulic bulge. By comparison of final forming pressure, respectively, obtained from calculation, and hydroforming experiment, all of these methods are proved reasonable. Numerical simulation results also indicate that the two calculation methods still retain accuracy under different transition filet radius, although transition filets  are ignored in calculation of final hydraulic forming pressure calculation.

References

1.
García
,
A.
,
Solano
,
J. P.
,
Vicente
,
P. G.
, and
Viedma
,
A.
,
2012
, “
The Influence of Artificial Roughness Shape on Heat Transfer Enhancement: Corrugated Tubes, Dimpled Tubes and Wire Coils
,”
Appl. Therm. Eng.
,
35
, pp.
196
201
.10.1016/j.applthermaleng.2011.10.030
2.
Rainieri
,
S.
,
Bozzoli
,
F.
, and
Pagliarini
,
G.
,
2012
, “
Experimental Investigation on the Convective Heat Transfer in Straight and Coiled Corrugated Tubes for Highly Viscous Fluids: Preliminary Results
,”
Int. J. Heat Mass Transfer
,
55
(
1–3
), pp.
498
504
.10.1016/j.ijheatmasstransfer.2011.08.030
3.
Han
,
C.
,
Zhang
,
W. W.
,
Han
,
C.
,
Han
,
H. Z.
,
Yuan
,
S. J.
, and
Li
,
B. X.
,
2013
, “
Analysis of Carrying Capacity for Hydroformed Corrugated Tubes
,”
J. Mater. Sci. Technol.
,
21
(
4
), pp.
1
6
.
4.
Koc
,
M.
,
Aue-u-lan
,
Y.
, and
Altan
,
T.
,
2001
, “
On the Characteristics of Tubular Materials for Hydroforming-Experimentation and Analysis
,”
Int. J. Mach. Tools Manuf.
,
41
(
5
), pp.
761
772
.10.1016/S0890-6955(00)00070-5
5.
Sokolowski
,
T.
,
Gerke
,
K.
,
Ahmetoglu
,
M.
, and
Altan
,
T.
,
2000
, “
Evaluation of Tube Formability and Material Characteristics: Hydraulic Bulge Testing of Tubes
,”
J. Mater. Process. Technol.
,
98
(
1
), pp.
34
40
.10.1016/S0924-0136(99)00303-9
6.
Ceretti
,
E.
,
Braga
,
D.
, and
Giardini
,
C.
,
2008
, “
Steel and Copper Flow Stress Determination for THF Applications
,”
Int. J. Mater. Forming
,
1
(
S1
), pp.
309
312
.10.1007/s12289-008-0342-3
7.
Bortot
,
P.
,
Ceretti
,
E.
, and
Giardini
,
G.
,
2008
, “
The Determination of Flow Stress of Tubular Material for Hydroforming Applications
,”
J. Mater. Process. Technol.
,
203
(
1–3
), pp.
381
388
.10.1016/j.jmatprotec.2007.10.047
8.
Wang
,
N. H.
, and
Yang
,
L. F.
,
2015
, “
Determination of Constitutive Relationship of Tubular Materials Based on Incremental Theory and Hydraulic Bulge Test
,”
Forging Stamping Technol.
,
40
(
2
), pp.
133
137
.10.13330/j.issn.1000-3940.2015.02.025
9.
Koc
,
M.
, and
Altan
,
T.
,
2001
, “
An Overall Review of the Tube Hydroforming (THF) Technology
,”
J. Mater. Process. Technol.
,
108
(
3
), pp.
384
393
.10.1016/S0924-0136(00)00830-X
10.
He
,
Z.
,
Yuan
,
S.
,
Liu
,
G.
,
Wu
,
J.
, and
Cha
,
W.
,
2010
, “
Formability Testing of AZ31B Magnesium Alloy Tube at Elevated Temperature
,”
J. Mater. Process. Technol.
,
210
(
6–7
), pp.
877
884
.10.1016/j.jmatprotec.2010.01.020
11.
He
,
Z. B.
,
Yuan
,
S. J.
,
Zha
,
W. W.
, and
Liang
,
Y. C.
,
2008
, “
Force and Deformation Analysis of Tube Ring Specimen During Hoop Tension Test
,”
J. Acta Metall. Sin.
,
44
(
4
), pp.
423
427
.
12.
Yuan
,
S. J.
,
He
,
Z. B.
,
Liu
,
G.
,
Wang
,
X. S.
, and
Han
,
C.
,
2011
, “
New Developments in Theory and Processes of Internal High Pressure Forming
,”
Chin. J. Nonferrous Met.
,
21
(
10
), pp.
2523
2533
.
13.
Zhang
,
W. W.
,
Han
,
C.
,
Han
,
H. Z.
,
Yuan
,
S. J.
, and
Li
,
B. X.
,
2013
, “
Effect of Shape on Structural Stability and Heat Transfer Characteristics of Corrugated Tubes
,”
J. Harbin Inst. Technol.
,
45
(
7
), pp.
57
62
.
14.
Woo
,
D. M.
,
1964
, “
The Analysis of Axisymmetric Forming of Sheet Metal and the Hydrostatic Bulging Process
,”
Int. J. Mech. Sci.
,
6
(
4
), pp.
303
317
.10.1016/0020-7403(64)90034-7
15.
Xu
,
H. B.
,
Seyedkashi
,
S.
,
Joo
,
B. D.
, and
Moon
,
Y. H.
,
2015
, “
Analytical Prediction of Forming Pressure for Three-Layered Tube Hydroforming
,”
J. Eng. Manuf.
,
229
(
9
), pp.
1575
1583
.10.1177/0954405414539489
16.
Lei
,
L. P.
,
Kim
,
J.
, and
Kang
,
B. S.
,
2000
, “
Analysis and Design of Hydrofoming Process for Automobile Rear Axle Housing by FEM
,”
Int. J. Mach. Tools Manuf.
,
40
(
12
), pp.
1691
1708
.10.1016/S0890-6955(00)00031-6
17.
Yang
,
B.
,
Zhang
,
W. G.
, and
Li
,
S. H.
,
2006
, “
Analysis and Finite Element Simulation of the Tube Bulge Hydroforming Process
,”
Int. J. Adv. Manuf. Technol.
,
29
(
5
), pp.
453
458
.10.1007/s00170-005-2548-6
18.
Strano
,
M.
, and
Altan
,
T.
,
2004
, “
An Inverse Energy Approach to Determine the Flow Stress of Tubular Materials for Hydroforming Applications
,”
J. Mater. Process. Technol.
,
146
(
1
), pp.
92
96
.10.1016/j.jmatprotec.2003.07.016
19.
Yang
,
L. F.
, and
Guo
,
W.
,
2005
, “
Novel Approach for Analysis of Deformation Behavior of Thin-Walled Tube in Free Hydro-Bulging Process
,”
Trans. Nonferrous Met. Soc. China
,
15
(
3
), pp.
299
304
.10.1016/S1003-6326(11)61454-4
20.
Yang
,
L. F.
,
Guo
,
W.
, and
Huang
,
M. F.
,
2006
, “
Determination of Maximum Forming Pressure and Bulge Coefficient of Thin-Walled Tube in Free Hydro-Bulging
,”
J. Plasticity Eng.
,
13
(
1
), pp.
1
17
.
21.
Yue
,
L. Y.
,
1996
, “
A New Method for Analysis of Freely-Bulged Round Sheet Under Hydraulic Pressure
,”
J. Jiangsu Univ. Sci. Technol.
,
17
(
2
), pp.
77
82
.
22.
Zhao
,
C. C.
,
Zhang
,
T.
,
Liu
,
G. H.
, and
Liu
,
Z. B.
,
1997
, “
The Research on Limited Length Thin Tube Bulge Forming
,”
J. Plasticity Eng.
,
4
(
1
), pp.
36
41
.
23.
Song
,
X. Y.
,
Hui
,
H.
, and
Gong
,
J. G.
,
2017
, “
Numerical Analysis and Experimental Research on Process of Corrugated Tubes Hydroforming
,”
J. Plasticity Eng.
,
24
(
6
), pp.
68
73
.
You do not currently have access to this content.