Abstract

This paper presents a numerical study of plastic hardening models used in the stress, strain, and fatigue life simulations of a pipeline elbow under operating pressure and cyclic in-plane bending. To determine more accurate stresses, strains, and fatigue life of the elbow in cyclic loading, the material plastic hardening response and the Bauschinger effect need to be considered properly in the numerical simulation. The isotropic, kinematic, and combined isotropic/kinematic hardening models are, thus, evaluated in the elastic-plastic finite element analysis (FEA) of a benchmark beam. On this basis, those plastic hardening models are applied to simulate the elbow under combined loading of constant internal pressure and cyclic in-plane bending. With the FEA results and selected fatigue models that are commonly used in the pipeline industry, fatigue life of the elbow is predicted for each hardening model. As such, the appropriate plastic hardening model and fatigue life model to predict fatigue life of the elbow are determined.

References

References
1.
Karamanos
,
S. A.
,
2016
, “
Mechanical Behavior of Steel Pipe Bends: An Overview
,”
ASME J. Pressure Vessel Technol.
,
138
(
4
), p.
041203
.10.1115/1.4031940
2.
Transportation Safety Board of Canada
,
2013
, “
Pipeline Investigation
,” Transportation Safety Board of Canada, Fort McMurray, AB, Canada, Report No.
P13H0107
.http://www.bst-tsb.gc.ca/eng/rapports-reports/pipeline/2013/p13h0107/p13h0107.html
3.
Lemaitre
,
J.
, and
Chaboche
,
J. L.
,
1990
,
Mechanics of Solid Mechanics
,
Cambridge University Press
,
Cambridge, UK
, pp.
161
241
.
4.
ABAQUS,
2016
, “
ABAQUS/Standard User's Manual, Version 2016
,” Simulia, Providence, RI.
5.
Zhang
,
Z. T.
, and
Hu
,
S. J.
,
1998
, “
Stress and Residual Stress Distributions in Plane Strain Bending
,”
Int. J. Mech. Sci.
,
40
(
6
), pp.
533
543
.10.1016/S0020-7403(97)00075-1
6.
Brunet
,
M.
,
Morestin
,
F.
, and
Godereaux
,
S.
,
2001
, “
Nonlinear Kinematic Hardening Identification for Anishotropic Sheet Metals With Bending-Unbending Tests
,”
ASME J. Eng. Mater. Technol.
,
123
(
4
), pp.
378
383
.10.1115/1.1394202
7.
Zhao
,
K. M.
, and
Lee
,
J. K.
,
2002
, “
Finite Element Analysis of the Three-Point Bending of Sheet Metals
,”
J. Mater. Process. Technol.
,
122
(
1
), pp.
6
11
.10.1016/S0924-0136(01)01064-0
8.
Yoshida
,
F.
, and
Uemori
,
T.
,
2003
, “
A Model of Large-Strain Cyclic Plasticity and Its Application to Springback Simulation
,”
Int. J. Mech. Sci.
,
45
(
10
), pp.
1687
1702
.10.1016/j.ijmecsci.2003.10.013
9.
Hassan
,
T.
, and
Liu
,
Z.
,
2001
, “
On the Difference of Fatigue Strengths From Rotating Bending, Four-Point Bending, and Cantilever Bending Tests
,”
Int. J. Pressure Vessels Piping
,
78
(
1
), pp.
19
30
.10.1016/S0308-0161(00)00080-6
10.
Yoon
,
S.
,
Hong
,
S.-G.
,
Lee
,
S.-B.
, and
Kim
,
B.-S.
,
2003
, “
Low Cycle Fatigue Testing of 429EM Stainless Steel Pipe
,”
Int. J. Fatigue
,
25
(
9–11
), pp.
1301
1307
.10.1016/j.ijfatigue.2003.08.015
11.
Kulkarni
,
S. C.
,
Desai
,
Y. M.
,
Kant
,
T.
,
Reddy
,
G. R.
,
Prasad
,
P.
,
Vaze
,
K. K.
, and
Gupta
,
C.
,
2004
, “
Uniaxial and Biaxial Ratcheting in Piping Materials—Experiments and Analysis
,”
Int. J. Pressure Vessels Piping
,
81
(
7
), pp.
609
617
.10.1016/j.ijpvp.2004.04.001
12.
Weiβ
,
E.
,
Lietzmann
,
A.
, and
Rudolph
,
J.
,
1996
, “
Linear and Nonlinear Finite-Element Analysis of Pipe Bends
,”
Int. J. Pressure Vessels Piping
,
67
, pp.
211
217
.10.1016/0308-0161(95)00019-4
13.
Robertson
,
A.
,
Li
,
H.
, and
Mackenzie
,
D.
,
2005
, “
Plastic Collapse of Pipe Bends Under Combined Internal Pressure and In-Plane Bending
,”
Int. J. Pressure Vessels Piping
,
82
(
5
), pp.
407
416
.10.1016/j.ijpvp.2004.09.005
14.
Kim
,
Y. J.
, and
Oh
,
C. S.
,
2006
, “
Limit Loads for Pipe Bends Under Combined Pressure and In-Plane Bending Based on Finite Element Limit Analysis
,”
Int. J. Pressure Vessels Piping
,
83
(
2
), pp.
148
153
.10.1016/j.ijpvp.2005.11.001
15.
Chattopadhyay
,
J.
, and
Tomar
,
A. K. S.
,
2006
, “
New Plastic Collapse Moment Equations of Defect-Free and Throughwall Circumferentially Cracked Elbows Subjected to Combined Internal Pressure and In-Plane Bending Moment
,”
Eng. Fract. Mech.
,
73
(
7
), pp.
829
854
.10.1016/j.engfracmech.2005.12.002
16.
Varelis
,
G. E.
,
Karamanos
,
S. A.
, and
Gresnigt
,
A. M.
,
2012
, “
Pipe Elbows Under Strong Cyclic Loading
,”
ASME J. Pressure Vessel Technol.
,
135
(
1
), p.
011207
.10.1115/1.4007293
17.
Takahashi
,
K.
,
Ando
,
K.
,
Matsuo
,
K.
, and
Urabe
,
Y.
,
2014
, “
Estimation of Low-Cycle Fatigue Life of Elbow Pipes Considering the Multi-Axial Stress Effect
,”
ASME J. Pressure Vessel Technol.
,
136
(
4
), p.
041405
.10.1115/1.4026903
18.
Varelis
,
G. E.
, and
Karamanos
,
S. A.
,
2014
, “
Low-Cycle Fatigue of Pressurized Steel Elbows Under In-Plane Bending
,”
ASME J. Pressure Vessel Technol.
,
137
(
1
), p.
011401
.10.1115/1.4027316
19.
Firoozabad
,
E. S.
,
Jeon
,
B.-G.
,
Choi
,
H.-S.
, and
Kim
,
N.-S.
,
2016
, “
Failure Criterion for Steel Pipe Elbows Under Cyclic Loading
,”
Eng. Failure Anal.
,
66
, pp.
515
525
.10.1016/j.engfailanal.2016.05.012
20.
Jeon
,
B.-G.
,
Kim
,
S.-W.
,
Choi
,
H.-S.
,
Park
,
D.-U.
, and
Kim
,
N.-S.
,
2017
, “
A Failure Estimation Method of Steel Pipe Elbows Under In-Plane Cyclic Bending
,”
Nucl. Eng. Technol.
,
49
(
1
), pp.
245
253
.10.1016/j.net.2016.07.006
21.
Abdel-Karim
,
M.
,
2005
, “
Shakedown of Complex Structures According to Various Hardening Rules
,”
Int. J. Pressure Vessels Piping
,
82
(
6
), pp.
427
458
.10.1016/j.ijpvp.2005.01.007
22.
Zhu
,
X. K.
, and
Leis
,
B. N.
,
2007
, “
Elastic-Plastic Finite Element Simulation and Fatigue Life Prediction for Beam and Elbow Under Cyclic Loading
,”
ASME
Paper No. PVP2007-26273.10.1115/PVP2007-26273
23.
Gupta
,
S. K.
,
Goyal
,
S.
,
Bhasin
,
V.
,
Vaze
,
K. K.
,
Ghosh
,
A. K.
, and
Kushwaha
,
H. S.
,
2009
, “
Ratcheting-Fatigue Failure of Pressurized Elbows Made of Carbon Steel
,” SMiRT 20, Espoo, Finland, Aug. 9–14, Paper No. 1861.
24.
Goyal
,
S.
,
Gupta
,
S. K.
,
Bgasin
,
V.
, and
Vaze
,
K. K.
,
2011
, “
Cyclic Plasticity and Fatigue-Ratcheting Behavior of SS304 LN Stainless Steel Material
,” SMiRT 21, New Delhi, India, Nov. 6–11, Paper No. 621.
25.
Zhu
,
S. P.
,
Lei
,
Q.
, and
Wang
,
Q. Y.
,
2017
, “
Mean Stress and Ratcheting Corrections in Fatigue Life Prediction of Metals
,”
Fatigue Fract. Eng. Mater. Struct.
,
40
(
9
), pp.
1343
1354
.10.1111/ffe.12569
26.
Liu
,
C.
,
Yu
,
D.
,
Akram
,
W.
, and
Chen
,
X.
,
2018
, “
Thermal Aging Effect on the Ratcheting Behavior of Pressurized Elbow Pipe
,”
ASME J. Pressure Vessel Technol.
,
140
(
2
), p.
021604
.10.1115/1.4039073
27.
Jiang
,
W.
,
Luo
,
Y.
,
Wang
,
B.
,
Woo
,
W.
, and
Tu
,
S. D.
,
2015
, “
Neutron Diffraction Measurement and Numerical Simulation to Study the Effect of Repair Depth on Residual Stress in 316 L Stainless Steel Repair Weld
,”
ASME J. Pressure Vessel Technol.
,
137
(
4
), p.
041406
.10.1115/1.4028515
28.
Smith
,
K. N.
,
Watson
,
P.
, and
Topper
,
T. H.
,
1970
, “
A Stress-Strain Function for the Fatigue of Metal
,”
J. Mater.
,
5
(4), pp.
767
778
.
29.
Koh
,
S. K.
,
2002
, “
Fatigue Damage Evaluation of a High-Pressure Tube Steel Using Cyclic Strain Energy Density
,”
Int. J. Pressure Vessels Piping
,
79
(
12
), pp.
791
798
.10.1016/S0308-0161(02)00135-7
30.
Dowling
,
N. E.
,
1979
,
Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture and Fatigue
,
2nd ed.
,
Prentice Hall
,
Upper Saddle River, NJ
.
31.
Leis
,
B. N.
,
Clark
,
T.
, and
Zhu
,
X. K.
,
2004
, “
Criteria to Assess Wrinklebend Severity for Use in Pipeline Integrity Management
,” Columbia Gas Transmission, Battelle, Columbus, OH.
32.
Zhu
,
X. K.
,
2018
, “
A Comparative Study of Fatigue Resistance Models Used for Carbon Steels
,” IR&D, EWI, Columbus, OH, Report No. 54862IRD.
33.
Rosenfeld
,
M. J.
, and
Kiefner
,
J. F.
,
2006
, “
Basic of Metal Fatigue in Nature Gas Pipeline Systems—A Primer for Gas Pipeline Operators
,” Pipeline Research Council International/Kiefer and Associates, Columbus, OH, Report No. L52270.
You do not currently have access to this content.