Abstract

Over the range of variables (temperature and stress) normally encountered in service applications, creep behaviors of 9Cr-1Mo steel were investigated with various models, such as Wilshire model, combination of exponential form and omega (CEO) model, and continuum damage mechanics (CDM) model. First, a series of short-term creep data was prepared to evaluate the material parameters occurring in these models. Then, creep curve, minimum creep rate, and long-term creep life of present 9Cr-1Mo steel were extrapolated with these estimated models. Based on the analysis of obtained results in detail, it suggested that both CDM model and CEO model can give reliable minimum creep rate predictions. However, the most reliable values of long-term creep life are obtained by the CDM model, followed by the Wilshire model and then the CEO model. In particular, the physically based CDM model can provide useful insights into the underlying creep mechanisms. Therefore, the CDM model has promising potential to study the long-term creep behaviors of 9Cr-1Mo steels.

References

References
1.
Bloom
,
E. E.
,
1998
, “
The Challenge of Developing Structural Materials for Fusion Power Systems
,”
J. Nucl. Mater.
,
258–263
(
4
), pp.
7
17
.10.1016/S0022-3115(98)00352-3
2.
Lior
,
N.
,
1997
, “
Energy, Exergy and Thermoeconomic Analysis of the Effects of Fossil-Fuel Superheating in Nuclear Power Plants
,”
Energy Convers. Manage.
,
38
(
15–17
), pp.
1585
1593
.10.1016/S0196-8904(96)00235-X
3.
Tanaka
,
R.
,
2000
, “
Research and Development of Ultra-High Temperature Materials in Japan (Reprinted From Proceedings of High-Temperature Corrosion and Protection 2000)
,”
Mater. High Temp.
,
17
(
4
), pp.
457
464
.10.1179/mht.2000.060
4.
Lee
,
H. Y.
,
Kim
,
J. B.
, and
Park
,
H. Y.
,
2012
, “
High Temperature Design and Damage Evaluation of MOD.9Cr-1Mo Steel Heat Exchanger
,”
ASME J. Pressure Vessel Technol.
,
134
(
5
), p.
051101
.10.1115/1.4005938
5.
Swindeman
,
R. W.
,
Santella
,
M. L.
,
Maziasz
,
P. J.
,
Roberts
,
B. W.
, and
Coleman
,
K.
,
2004
, “
Issues in Replacing Cr–Mo Steels and Stainless Steels With 9Cr–1Mo–V Steel
,”
Int. J. Pressure Vessels Piping
,
81
(
6
), pp.
507
512
.10.1016/j.ijpvp.2003.12.009
6.
Abe
,
F.
,
2016
, “
Progress in Creep-Resistant Steels for High Efficiency Coal-Fired Power Plants
,”
ASME J. Pressure Vessel Technol.
,
138
(
4
), p.
040804
.10.1115/1.4032372
7.
Bendick
,
W.
,
Cipolla
,
L.
,
Gabrel
,
J.
, and
Hald
,
J.
,
2010
, “
New ECCC Assessment of Creep Rupture Strength for Steel Grade X10CrMoVNb9-1 (Grade 91)
,”
Int. J. Pressure Vessels Piping
,
87
(
6
), pp.
304
309
.10.1016/j.ijpvp.2010.03.010
8.
Kim
,
W.-G.
,
Kim
,
S.-H.
, and
Lee
,
C.-B.
,
2011
, “
Long-Term Creep Characterization of Gr. 91 Steel by Modified Creep Constitutive Equations
,”
Met. Mater. Int.
,
17
(
3
), pp.
497
504
.10.1007/s12540-011-0630-1
9.
Wilshire
,
B.
, and
Scharning
,
P. J.
,
2007
, “
Long-Term Creep Life Prediction for a High Chromium Steel
,”
Scr. Mater.
,
56
(
8
), pp.
701
704
.10.1016/j.scriptamat.2006.12.033
10.
Spigarelli
,
S.
,
Cerri
,
E.
,
Bianchi
,
P.
, and
Evangelista
,
E.
,
1999
, “
Interpretation of Creep Behaviour of a 9Cr-Mo-Nb-V-N (T91) Steel Using Threshold Stress Concept
,”
Mater. Sci. Technol.
,
15
(
12
), pp.
1433
1440
.10.1179/026708399101505428
11.
Dyson
,
B.
,
2000
, “
Use of CDM in Materials Modeling and Component Creep Life Prediction
,”
ASME J. Pressure Vessel Technol.
,
122
(
3
), pp.
281
296
.10.1115/1.556185
12.
Wilshire
,
B.
, and
Scharning
,
P. J.
,
2008
, “
A New Methodology for Analysis of Creep and Creep Fracture Data for 9–12% Chromium Steels
,”
Int. Mater. Rev.
,
53
(
2
), pp.
91
104
.10.1179/174328008X254349
13.
Omprakash
,
C. M.
,
Kumar
,
A.
,
Srivathsa
,
B.
, and
Satyanarayana
,
D. V. V.
,
2013
, “
Prediction of Creep Curves of High Temperature Alloys Using θ-Projection Concept
,”
Procedia Eng.
,
55
, pp.
756
759
.10.1016/j.proeng.2013.03.327
14.
Eberle
,
N.
, and
Jones
,
F. L.
,
2003
, “
Creep Deformation in a Modified 9Cr-1Mo Steel θ Projection Approach to Prediction of Creep Properties
,”
Mater. Sci. Technol.
,
19
(
2
), pp.
214
218
.10.1179/026708303225009427
15.
Basirat
,
M.
,
Shrestha
,
T.
,
Potirniche
,
G. P.
,
Charit
,
I.
, and
Rink
,
K.
,
2012
, “
A Study of the Creep Behavior of Modified 9Cr–1Mo Steel Using Continuum-Damage Modeling
,”
Int. J. Plast.
,
37
(
6
), pp.
95
107
.10.1016/j.ijplas.2012.04.004
16.
Hore
,
S.
, and
Ghosh
,
R. N.
,
2011
, “
Computer Simulation of the High Temperature Creep Behaviour of Cr–Mo Steels
,”
Mater. Sci. Eng. A
,
528
(
19–20
), pp.
6095
6102
.10.1016/j.msea.2011.04.050
17.
Oruganti
,
R.
,
Karadge
,
M.
, and
Swaminathan
,
S.
,
2011
, “
Damage Mechanics-Based Creep Model for 9–10%Cr Ferritic Steels
,”
Acta Mater.
,
59
(
5
), pp.
2145
2155
.10.1016/j.actamat.2010.12.015
18.
Evans
,
M.
,
2004
, “
A Comparative Assessment of Creep Property Predictions for a 1CrMoV Rotor Steel Using the CRISPEN, CDM, Omega and Theta Projection Techniques
,”
J. Mater. Sci.
,
39
(
6
), pp.
2053
2071
.10.1023/B:JMSC.0000017768.59276.3f
19.
Rouse
,
J. P.
,
Sun
,
W.
,
Hyde
,
T. H.
, and
Morris
,
A.
,
2013
, “
Comparative Assessment of Several Creep Damage Models for Use in Life Prediction
,”
Int. J. Pressure Vessels Piping
,
108–109
, pp.
81
87
.10.1016/j.ijpvp.2013.04.012
20.
Abdallah
,
Z.
,
Perkins
,
K.
, and
Arnold
,
C.
,
2018
, “
Creep Lifing Models and Techniques
,”
Creep
,
T.
Tanski
,
M.
Sroka
, and
A.
Zielinski
, eds.,
Intech
,
Rijeka, Croatia
, pp.
115
149
.
21.
NIMS
,
2014
, “
Creep Data Sheet No. 43A
,” National Institute for Materials Science,
Tsukuba
, Japan.
22.
Chen
,
R. P.
,
Armaki
,
H. G.
,
Maruyama
,
K.
, and
Igarashi
,
M.
,
2011
, “
Long-Term Microstructural Degradation and Creep Strength in Gr.91 Steel
,”
Mater. Sci. Eng. A
,
528
(
13
), pp.
4390
4394
.10.1016/j.msea.2011.02.060
23.
Kushima
,
H.
,
Kimura
,
K.
, and
Abe
,
F.
,
1999
, “
Degradation of Mod.9Cr-1Mo Steel During Long-Term Creep Deformation
,”
Tetsu-to-Hagane
,
85
(
11
), pp.
841
847
.10.2355/tetsutohagane1955.85.11_841
24.
Wilshire
,
B.
, and
Scharning
,
P. J.
,
2008
, “
Extrapolation of Creep Life Data for 1Cr–0.5Mo Steel
,”
Int. J. Pressure Vessels Piping
,
85
(
10
), pp.
739
743
.10.1016/j.ijpvp.2008.04.002
25.
Kariya
,
Y.
,
Otsuka
,
M.
, and
Plumbridge
,
W. J.
,
2003
, “
The Constitutive Creep Equation for a Eutectic Sn-Ag Alloy Using the Modified Theta-Projection Concept
,”
J. Electron. Mater.
,
32
(
12
), pp.
1398
1402
.10.1007/s11664-003-0107-1
26.
Maruyama
,
K.
,
Nonaka
,
I.
,
Sawada
,
K.
,
Sato
,
H.
,
Koike
,
J.-I.
, and
Umaki
,
H.
,
1997
, “
Improvement of Omega Method for Creep Life Prediction
,”
ISIJ Int.
,
37
(
4
), pp.
419
423
.10.2355/isijinternational.37.419
27.
Paku
,
K.
,
Masuyama
,
F.
, and
Endou
,
T.
,
2010
, “
Improvement of Ω Method to Estimate Creep Behavior of a Mod.9Cr-1Mo Steel
,”
Tetsu-to-Hagane
,
85
(
6
), pp.
492
499
.10.2355/tetsutohagane1955.85.6_492
28.
Park
,
K. S.
,
Masuyama
,
F.
, and
Endo
,
T.
,
2007
, “
Creep Modeling for Life Evaluation of Heat-Resistant Steel With a Martensitic Structure
,”
ISIJ Int.
,
41
(
Suppl
.), pp.
S86
S90
.10.2355/isijinternational.41.Suppl_S86
29.
Dyson
,
B. F.
,
1988
, “
Creep and Fracture of Metals: Mechanisms and Mechanics
,”
Rev. Phys. Appl.
,
23
(
4
), pp.
605
613
.10.1051/rphysap:01988002304060500
30.
Dyson
,
B. F.
, and
Osgerby
,
D.
,
1993
, “
Modelling and Analysis of Creep Deformation and Fracture in a 1 Cr1/2Mo Ferritic Steel
,” NPL,
Teddington, UK
, Report No. 45.
31.
Christopher
,
J.
,
Sainath
,
G.
,
Srinivasan
,
V. S.
,
Samuel
,
E. I.
,
Choudhary
,
B. K.
,
Mathew
,
M. D.
, and
Jayakumar
,
T.
,
2013
, “
Continuum Damage Mechanics Approach to Predict Creep Behaviour of Modified 9Cr-1Mo Ferritic Steel at 873 K
,”
Procedia Eng.
,
55
(
5
), pp.
798
804
.10.1016/j.proeng.2013.03.334
32.
Hald
,
J.
, and
Korcakova
,
L.
,
2003
, “
Precipitate Stability in Creep Resistant Ferritic Steels-Experimental Investigations and Modelling
,”
Trans. Iron Steel Inst. Jpn.
,
43
(
3
), pp.
420
427
.10.2355/isijinternational.43.420
33.
Ghosh
,
R. N.
,
2013
, “
Creep Life Predictions of Engineering Components: Problems & Prospects
,”
Procedia Eng.
,
55
, pp.
599
606
.10.1016/j.proeng.2013.03.301
34.
Anderson
,
P.
,
Bellgardt
,
T.
, and
Jones
,
F. L.
,
2003
, “
Creep Deformation in a Modified 9Cr-1 Mo Steel
,”
Met. Sci. Technol.
,
19
(
2
), pp.
207
213
.10.1179/026708303225009436
35.
Taylor
,
N.
,
Bontempi
,
P.
,
Maciga
,
G.
, and
Livraghi
,
M.
,
1994
, “
Creep and Fatigue Characterization of Advanced 9Cr Steel—Base and Welds
,”
Materials for Advanced Power Engineering
,
D.
Coutsouradis
, eds.,
Kluwer
,
Dordrecht, The Netherlands
, pp.
341
350
.
36.
Sklenička
,
V.
,
Kuchařová
,
K.
,
Dlouhý
,
A.
, and
Krejčí
,
J.
,
1994
, “
Creep Behaviour and Microstructure of a 9% Cr Steel
,”
Materials for Advanced Power Engineering
,
D.
Coutsouradis
, ed.,
Kluwer
,
Dordrecht, The Netherlands
, pp.
435
444
.
You do not currently have access to this content.