The influence of oxidation on the estimation of long-term creep rupture strength is investigated for 2.25% chromium (Cr)–1% molybdenum (Mo) steel specified as JIS STBA 24, JIS SCMV 4 NT, and ASTM A542/A542M by the Larson–Miller method using creep rupture data in the National Institute for Materials Science (NIMS) Creep Data Sheets at 450–650 °C for up to 313,000 h. The creep rupture data exhibit a change in slope of the stress versus time to rupture curves due to oxidation in air during 600 °C creep tests at 15,000–40,000 h and 650 °C tests at 2000–3500 h for different size specimens, which indicates degradation in creep life by the oxidation. The estimated 100,000 h creep rupture strength using regression analysis is increased by the elimination of long-term data degraded by the oxidation. Several metallurgical factors, such as the initial strength represented by the 0.2% proof stress at the creep test temperature and the concentration of aluminum (Al) impurity, also affect the creep life of the tested steel.

References

References
1.
Orr
,
J.
, and
Robertson
,
D. G.
,
2005
, “
Low Alloy Steels: The Foundation of the Power Generation Industry
,”
ECCC International Conference on Creep and Fracture in High Temperature Components
, London, Sept. 12–14, pp.
585
598
.
2.
Robertson
,
D. G.
,
2014
, “
Traditional Low Alloy Steels in Power Plant Design—Development and Applications
,”
Coal Power Plant Materials and Life Assessment
,
A.
Shibli
, ed.,
Woodhead Publishing
,
Amsterdam, The Netherlands
, pp.
107
126
.
3.
Mazrouee
,
A. A.
,
Ibrahim
,
R. N.
, and
Raman
,
R. K.
,
2005
, “
Effects of High Temperature Oxidation on Creep Life Prediction of Cr–Mo Components
,”
ECCC International Conference on Creep and Fracture in High Temperature Components
, London, Sept. 12–14, pp.
959
968
.
4.
Bueno
,
L. O.
,
2005
, “
Effect of Oxidation on Creep Data: Part 1—Comparison Between Some Constant Load Creep Results in Air and Vacuum on 2 1/4Cr–1Mo Steel From 600 °C to 700 °C
,”
ECCC International Conference on Creep and Fracture in High Temperature Components
, London, Sept. 12–14, pp.
880
889
.
5.
ASME,
2019
, “
ASME Boiler and Pressure Vessel Code
,” Sec. II Materials, Part D, Properties (Metric), pp.
40
43
.
6.
Japanese Standards Association
,
2015
, “
Construction of Pressure Vessel
,” Japanese Standards Association, Tokyo, Japan, Standard No. JIS B8267.
7.
Viswanathan
,
R.
,
1995
,
Damage Mechanisms and Life Assessment of High-Temperature Components
,
American Society of Materials (ASM) International
,
Metals Park, OH
, pp.
59
110
.
8.
Marino
,
L.
, and
Bueno
,
L.
,
2001
, “
High-Temperature Oxidation Behavior of 2 1/4Cr–1Mo Steel in Air: Part 1—Gain of Mass Kinetics and Characterization of the Oxide Scale
,”
ASME J. Pressure Vessel Technol.
,
123
(
1
), pp.
88
96
.
9.
Bueno
,
L.
, and
Marino
,
L.
,
2001
, “
High-Temperature Oxidation Behavior of 2 1/4Cr–1Mo Steel in Air—Part 2: Scale Growth, Metal Loss Kinetics, and Stress Enhancement Factors During Creep Testing
,”
ASME J. Pressure Vessel Technol.
,
123
(
1
), pp.
97
104
.
10.
Kaneko
,
T.
,
Hongo
,
H.
,
Nagashima
,
N.
,
Monma
,
Y.
, and
Tanaka
,
C.
,
1988
, “
Effect of Oxide Scaling on Creep-Rupture Life of 2.25Cr–1Mo Steels
,”
CAMP-ISIJ
, Vol. 1, Narashino, Japan, Apr. 2, p.
900
.
11.
NIMS
,
1980
, “
NIMS Creep Data Sheets
,” National Institute for Materials Science, Tokyo, Tsukuba, Japan.
12.
NIMS
,
1986
, “NIMS Creep Data Sheets,” National Institute for Materials Science, Tokyo, Tsukuba, Japan.
13.
NIMS
,
1997
, “NIMS Creep Data Sheets,” National Institute for Materials Science, Tokyo, Tsukuba, Japan.
14.
NIMS
,
2003
, “NIMS Creep Data Sheets,” National Institute for Materials Science, Tokyo, Tsukuba, Japan.
15.
Kushima
,
H.
,
Kimura
,
K.
,
Abe
,
F.
,
Yagi
,
K.
,
Irie
,
H.
, and
Maruyama
,
K.
,
1999
, “
Effect of Initial Microstructure on Long-Term Creep Strength Properties of 2.25Cr–1Mo Steel
,”
Tetsu-to-Hagane
,
85
(
11
), pp.
848
855
(in Japanese).
16.
Abe
,
F.
,
Tabuchi
,
M.
, and
Hayakawa
,
M.
,
2016
, “
Influence of Data Scattering on Estimation of 100,000 h-Creep Rupture Strength of Alloy 617 at 700 °C by Larson-Miller Method
,”
ASME J. Pressure Vessel Technol.
,
139
(
1
), pp.
011403-1
011403-9
.
17.
Iseda
,
A.
,
Teranishi
,
H.
, and
Masuyama
,
F.
,
1990
, “
Effect of Chemical Compositions and Heat Treatments on Creep Rupture Strength of 12 wt % Cr Heat Resistant Steels for Boiler
,”
Tetsu-to-Hagane
,
76
(
7
), pp.
1076
1083
(in Japanese).
18.
Abe
,
F.
,
2010
, “
Heat-to-Heat Variation in Long-Term Creep Strength of Some Ferritic Steels
,”
Int. J. Pressure Vessels Piping
,
87
(
6
), pp.
310
318
.
19.
Yukitoshi
,
T.
, and
Nishida
,
K.
,
1972
, “
The Effect of Aluminum and Nitrogen on the Creep Rupture Strength of Low Alloy Cr-Mo Steels
,”
Trans. ISIJ
,
12
, pp.
429
434
.
20.
Shinya
,
N.
,
Kyono
,
J.
,
Tanaka
,
H.
,
Murata
,
M.
, and
Yokoi
,
S.
,
1983
, “
Creep Rupture Properties and Creep Fracture Mechanism Map for Type 304 Stainless Steel
,”
Tetsu-To-Hagane
,
69
(
14
), pp.
1668
1675
.
21.
Schirra
,
M.
, and
Anderko
,
K.
,
1990
, “
Anomalies in Creep-Curves of Martensitic 9-14% Chromium Steels Under Long-Term Loading
,”
Steel Res.
,
61
(
6
), pp.
242
250
.
22.
Naoi
,
H.
,
Ohgami
,
M.
,
Liu
,
X.
, and
Fujita
,
T.
,
1997
, “
Effect of Aluminum Content on the Mechanical Properties of a 9Cr-0.5Mo-1.8W Steel
,”
Metall. Trans.
,
28A
, pp.
1195
203
.
23.
Kubon
,
Z.
, and
Foldyna
,
V.
,
1995
, “
The Effect of Nb, N and Al on the Creep Rupture Strength of 9-12% Cr Steel
,”
Mater. Technol.
,
66
, pp.
389
393
.
24.
Abe
,
F.
,
2001
, “
Heat-to-Heat Variation in Long-Term Creep Rupture Strength of 9 to 12Cr Steels
,”
NRIM-MPA Workshop
, Tsukuba, Japan, Mar. 14, pp.
1
10
.
25.
Brett
,
S. J.
,
Bates
,
J. S.
, and
Thomson
,
R. C.
,
2004
, “
Aluminum Nitride Precipitation in Low Strength Grade 91 Power Plant Steels
,”
Fourth International Conference on Advances in Materials Technology for Fossil Power Plants
, Hilton Head, NC, Oct. 25–28, pp.
202
216
.
26.
Brett
,
S. J.
,
2007
, “
UK Experience With Modified 9%Cr (Grade 91) Steel
,”
Energy Mater.
,
2
(
2
), pp.
117
121
.
27.
Wallwork
,
G. R.
,
1976
, “
The Oxidation of Alloys
,”
Rep. Prog. Phys.
,
39
(
5
), pp.
401
485
.
28.
ASME,
2015
, “
ASME Boiler and Pressure Vessel Code, Section II, Part D, Mandatory Appendix 5: Guidelines on the Approval of New Materials Under the ASME Boiler and Pressure Vessel Code
,” American Society of Mechanical Engineers, NY, pp.
940
942
.
29.
Abe
,
F.
,
2015
, “
Creep Behavior, Deformation Mechanisms and Creep Life of Mod.9Cr-1Mo Steel
,”
Metall. Mater. Trans. A
,
46A
, pp.
5610
5625
.
30.
Ohba
,
T.
,
Baba
,
E.
,
Kimura
,
K.
,
Abe
,
F.
,
Yagi
,
K.
, and
Nonaka
,
I.
,
2003
, “
Critical Stress for Transition of Creep Deformation Behaviour in Virgin and Long-Term Serviced Materials of 2.25Cr–1Mo Steel
,”
Sixth International Charles Parsons Turbine Conference
, Dublin, Ireland, Sept. 16–18, pp.
473
488
.
31.
Smith
,
G. V.
,
1969
, “
Evaluation of Elevated-Temperature Strength Data
,”
J. Mater.
,
4
, pp.
878
908
.
You do not currently have access to this content.