This paper proposes a framework to quantify the measurement error associated with lengths of corrosion defects on oil and gas pipelines reported by inline inspection (ILI) tools based on a relatively large set of ILI-reported and field-measured defect data collected from different in-service pipelines in Canada. A log-logistic model is proposed to quantify the likelihood of a given ILI-reported defect being a type I defect (without clustering error) or a type II defect (with clustering error). The measurement error associated with the ILI-reported length of the defect is quantified as the average of those associated with the types I and II defects, weighted by the corresponding probabilities obtained from the log-logistic model. The implications of the proposed framework for the reliability analysis of corroded pipelines given the ILI information are investigated using a realistic pipeline example.

References

References
1.
CSA
,
2015
, “
Oil and Gas Pipeline Systems
,” Canadian Standards Association, Mississauga, ON, Canada, Standard No. CSA Z662.
2.
Lam
,
C.
, and
Zhou
,
W.
,
2016
, “
Statistical Analyses of Incidents on Onshore Gas Transmission Pipelines Based on PHMSA Database
,”
Int. J. Pressure Vessels Piping
,
145
, pp.
29
40
.
3.
Kiefner
,
J. F.
, and
Vieth
,
P. H.
,
1989
,
A Modified Criterion for Evaluating the Remaining Strength of Corroded Pipe
,
American Gas Association
,
Washington, DC
.
4.
Benjamin
,
A. C.
,
Freire
,
J. L. F.
,
Vieira
,
R. D.
, and
Cunha
,
D. J. S.
,
2016
, “
Interaction of Corrosion Defects in Pipelines—Part 1: Fundamentals
,”
Int. J. Pressure Vessels Piping
,
144
, pp.
56
62
.
5.
Fenyvesi
,
L.
, and
Dumalski
,
S.
,
2005
, “
Determining Corrosion Growth Accurately and Reliably
,”
NACE International Corrosion2005
(
NACE
), Houston, TX, Apr. 3–7, Paper No. NACE-05154.https://www.onepetro.org/conference-paper/NACE-05154
6.
Nessim
,
M.
,
Dawson
,
J.
,
Mora
,
R.
, and
Hassanein
,
S.
,
2008
, “
Obtaining Corrosion Growth Rates From Repeat in-Line Inspection Runs and Dealing With the Measurement Uncertainties
,”
ASME
Paper No. IPC2008-64378.
7.
NACE
,
2010
, “
Standard Practice: In-Line Inspection of Pipelines
,” NACE, Houston, TX, Standard No. SP0102.
8.
Stephens
,
M.
, and
Nessim
,
M. A.
,
2006
, “
Comprehensive Approach to Corrosion Management Based on Structural Reliability Methods
,”
ASME
Paper No. IPC2006-10458.
9.
Zhou
,
W.
,
Siraj
,
T.
, and
Gong
,
C.
,
2015
, “
Reliability Consistent Mitigation Criteria for Corrosion Defects on Natural Gas Transmission Pipelines
,”
Can. J. Civ. Eng.
,
42
(
12
), p.
1032
.
10.
Cosham
,
A.
, and
Hopkins
,
P.
,
2002
, “
The Pipeline Defect Assessment Manual
,”
ASME
Paper No. IPC2002-27067.
11.
Al-Amin
,
M.
,
Zhou
,
W.
,
Zhang
,
S.
,
Kariyawasam
,
S.
, and
Wang
,
H.
,
2012
, “
Bayesian Model for Calibration of ILI Tools
,”
ASME
Paper No. IPC2012-90491.
12.
Caleyo
,
F.
,
Alfonso
,
L.
,
Espina-Hernández
,
J. H.
, and
Hallen
,
J. M.
,
2007
, “
Criteria for Performance Assessment and Calibration of In-Line Inspections of Oil and Gas Pipelines
,”
Meas. Sci. Technol.
,
18
(
7
), pp.
1787
1799
.
13.
Ellinger
,
M. A.
, Bubenik, T. A., and
Moreno
,
P. J.
,
2016
, “
ILI-to-Field Data Comparisons—What Accuracy Can You Expect?
,”
ASME
Paper No. IPC 2016-64526.
14.
Wright
,
C.
,
Dessein
,
T.
,
Li
,
Y.
, and
Ward
,
S.
,
2018
, “
Evaluation of Corrosion Growth Prediction Methodologies Using Burst Pressure Comparisons From Repeated In-Line Inspections
,”
ASME
Paper No. IPC2018-78294.
15.
ASME,
2016
, “
Pipeline Transportation Systems for Liquids and Slurries, ASME Code for Pressure Piping
,” American Society of Mechanical Engineers, New York, Standard No. B31.4.
16.
Dawson
,
J.
,
Weller
,
R.
, and
Rao
,
G.
,
2012
, “
Identification of Coincident Features in Pipelines Using ILI Data
,”
ASME
Paper No. IPC2012-90134.
17.
Reas
,
C.
, and
Fry
,
B.
,
2014
,
Processing: A Programming Handbook for Visual Designers and Artists
,
MIT Press
, Cambridge, MA.
18.
Seber
,
G. A. F.
, and
Lee
,
A. J.
,
2003
,
Linear Regression Analysis
,
Wiley
,
Hoboken, NJ
.
19.
Hosmer
,
D. W.
, and
Lemeshow
,
S.
,
2013
,
Applied Logistic Regression
,
Wiley & Son
,
Hoboken, NJ
.
20.
Kuhn
,
M.
, and
Johnson
,
K.
,
2013
,
Applied Predictive Modeling
,
Springer
,
New York
.
21.
Berens
,
A. P.
,
1983
, “
NDE Reliability Data Analysis
,”
Nondestructive Evaluation and Quality Control
(ASM Handbook, Vol. 17),
9th ed.
,
ASM International
, Novelty, OH.
22.
Cook
,
D.
,
Dixon
,
P.
,
Duckworth
,
W. M.
,
Kaiser
,
M. S.
,
Koehler
,
K.
,
Meeker
,
W. Q.
, and
Stephenson
,
W. R.
,
2000
, “
Chapter 3: Binary Response and Logistic Regression Analysis
,”University of Wisconsin, Madison, WI, accessed Aug. 5, 2014, http://www.stat.wisc.edu/~mchung/teaching/MIA/reading/GLM.logistic.Rpackage.pdf
23.
Fushiki
,
T.
,
2011
, “
Estimation of Prediction Error by Using K-Fold Cross-Validation
,”
Stat. Comput.
,
21
(
2
), pp.
137
146
.
24.
Witten
,
I. H.
, and
Frank
,
E.
,
2000
,
Data Mining
,
Academic Press
,
San Diego, CA
.
25.
Youden
,
W. J.
,
1950
, “
Index for Rating Diagnostic Tests
,”
Cancer
,
3
(
1
), pp.
32
35
.
26.
Ang
,
A. H.-S.
, and
Tang
,
W. H.
,
1975
, Probability Concepts in Engineering Planning and Design,
Basic Principles
, Vol.
1
,
Wiley
,
New York
.
27.
Everitt
,
B.
, and
Hand
,
D.
,
1981
,
Finite Mixture Distributions
,
Chapman and Hall
,
London
.
28.
Melchers
,
R. E.
,
1999
,
Structural Reliability Analysis and Prediction
,
Wiley
,
New York
.
29.
Jiao
,
G.
,
Sotberg
,
T.
, and
Igland
,
R.
,
1995
, “
SUPERB 2M Statistical Data-Basic Uncertainty Measures for Reliability Analysis of Offshore Pipelines
,” Norwegian Marine Technology Research Institute, Trondheim, Norway, Report No. STF70-F95212.
30.
Zhou
,
W.
, and
Huang
,
G. X.
,
2012
, “
Model Error Assessments of Burst Capacity Models for Corroded Pipelines
,”
Int. J. Pressure Vessels Piping
,
99–100
, pp.
1
8
.
31.
DNV-RP
,
2010
, “Recommended Practice: Corroded Pipelines,”
Det Norske Veritas
,
Hovik, Norway
, Standard No. DNV-RP-F101.
32.
Zhou
,
W.
, and
Nessim
,
M. A.
,
2011
, “
Optimal Design of Onshore Natural Gas Pipelines
,”
ASME J. Pressure Vessel Technol.
,
133
(
3
), p.
031702
.
You do not currently have access to this content.