Abstract

Cross-sectional ovalization (ovalization) usually occurs when thin-walled pipe is subjected to large plastic bending. This paper is concerned with residual deformation of thin-walled pipe's cross section in a radial direction when external bending moment is removed. In order to clarify the fundamental ovalization characteristics, find out what factors influence the residual flattening (value of ovalization), the ovalization behavior is investigated experimentally. The experiments are carried out on 21 stainless steel specimens with different geometric parameters under different bending radii by means of a four-point pure bending device. The residual cross-sectional flattenings are monitored continuously by scanning the cross section periodically along the circumferential direction. From the experimental results, it is observed that the cross-sectional shape of the thin-walled pipe is not perfect standard ellipse, and the appearance of the maximum residual flattening is usually found in the direction normal to the neutral surface. It is also revealed the relationships between the residual flattening and the bending radius, the wall thickness, and the pipe outer diameter, i.e., the residual flattening increases as the bending radius and the wall thickness reduce, but it increases as the outer diameter increases. These results are expected to find their potential application in thin-walled pipe bending operation.

References

References
1.
Brazier
,
L. G.
,
1927
, “
On the Flexure of Thin Cylindrical Shells and Other Thin Sections
,”
Proc. R. Soc. London. J. Ser. A, Containing Papers a Math. Phys. Character.
,
116
(
773
), pp.
104
114
.10.1098/rspa.1927.0125
2.
Ades
,
C. S.
,
1957
, “
Bending Strength of Tubing in the Plastic Range
,”
J. Aeronaut. Sci.
,
24
(
8
), pp.
605
610
.10.2514/8.3916
3.
Gellin
,
S.
,
1980
, “
The Plastic Buckling of Long Cylindrical Shells Under Pure Bending
,”
Inf. J. Solids Struct.
,
16
(
5
), pp.
397
407
.10.1016/0020-7683(80)90038-4
4.
Shaw
,
P. K.
, and
Kyriakides
,
S.
,
1985
, “
Inelastic Analysis of Thin-Walled Tubes Under Cyclic Bending
,”
Int. J. Solids Struct.
,
21
(
11
), pp.
1073
1100
.10.1016/0020-7683(85)90044-7
5.
Kyriakides
,
S.
, and
Corona
,
E.
,
2007
,
Mechanics of Offshore Pipelines
: Volume
1
, Buckling and Collapse,
Elsevier
, Singapore.
6.
Li
,
L. Y.
,
1996
, “
Bending Instability of Composite Tubes
,”
J. Aerosp. Eng.
,
9
(
2
), pp.
58
61
.10.1061/(ASCE)0893-1321(1996)9:2(58)
7.
Tatting
,
B. F.
,
Gürdal
,
Z.
, and
Vasiliev
,
V. V.
,
1997
, “
The Brazier Effect for Finite Length Composite Cylinders Under Bending
,”
Int. J. Solids Struct.
,
34
(
12
), pp.
1419
1440
.10.1016/S0020-7683(96)00094-7
8.
Hadas
,
Z.
, and
Moshe
,
S.
,
2014
, “
Bending Instability of a General Cross-Section Thin-Wall Tube for Minimal Radius of Curvature Passage
,”
ASME J. Appl. Mech.
,
81
(
10
), p.
101008
.10.1115/1.4028220
9.
Prinja
,
N. K.
, and
Chitkara
,
N. R.
,
1984
, “
Post-Collapse Cross-Sectional Flattening of Thick Pipes in Plastic Bending
,”
Nucl. Eng. Des.
,
83
(
1
), pp.
113
121
.10.1016/0029-5493(84)90036-0
10.
Tomasz
,
W.
, and
Sinmao Monique
,
V.
,
1996
, “
A Simplified Model of Brazier Effect in Plastic Bending of Cylindrical Tubes
,”
Int. J. Pressure Vessels Piping.
,
71
(
1
), pp.
19
28
.10.1016/S0308-0161(96)00018-X
11.
Elchalakani
,
M.
,
Zhao
,
X. L.
, and
Grzebieta
,
R. H.
,
2002
, “
Plastic Mechanism Analysis of Circular Tubes Under Pure Bending
,”
Int. J. Mech. Sci.
,
44
(
6
), pp.
1117
1143
.10.1016/S0020-7403(02)00017-6
12.
Poonaya
,
S.
,
Teeboonma
,
U.
, and
Thinvongpituk
,
C.
,
2009
, “
Plastic Collapse Analysis of Thin-Walled Circular Tubes Subjected to Bending
,”
Thin-Walled Struct.
,
47
(
6–7
), pp.
637
645
.10.1016/j.tws.2008.11.005
13.
Ji
,
L. K.
,
Zheng
,
M.
,
Chen
,
H. Y.
,
Zhao
,
Y.
,
Yu
,
L. J.
,
Hu
,
J.
, and
Teng
,
H. P.
,
2015
, “
Apparent Strain of a Pipe at Plastic Bending Buckling State
,”
J. Braz. Soc. Mech. Sci. Eng.
,
37
(
6
), pp.
1811
1818
.10.1007/s40430-014-0302-4
14.
Shigeki
,
M.
,
Ken-Ichi
,
M.
,
Hisashi
,
N.
, and
Kenji
,
H.
,
1997
, “
Experimental Analysis of the Flattening of the Cross-Section, the Springback and the Bending Moment of Clad Tubes in Uniform Bending
,”
J. Mater. Process. Technol.
,
66
(
1
), pp.
270
276
.10.1016/S0924-0136(96)02539-3
15.
Daxin
,
E.
, and
Liu
,
Y. F.
,
2010
, “
Springback and Time-Dependent Springback of 1Cr18Ni9Ti Stainless Steel Tubes Under Bending
,”
Mater. Des.
,
31
(
3
), pp.
256
1261
.10.1016/j.matdes.2009.09.026
16.
Liu
,
Y. F.
, and
Daxin
,
E.
,
2011
, “
Effects of Cross-Sectional Ovalization on Springback and Strain Distribution of Circular Tubes Under Bending
,”
J. Mater. Eng. Perform.
,
20
(
9
), pp.
1591
1599
.10.1007/s11665-010-9813-z
17.
Li
,
H.
,
Yang
,
H.
,
Tian
,
Y. L.
,
Li
,
G.
, and
Wang
,
Z.
,.
2012
, “
Geometry-Dependent Springback Behaviors of Thin-Walled Tube Upon Cold Bending
,”
Sci. China Technol. Sci.
,
55
(
12
), pp.
3469
3482
.10.1007/s11431-012-5001-8
18.
Zhang
,
Z. K.
,
Wu
,
J. J.
,
Guo
,
R. C.
,
Wang
,
M. Z.
,
Li
,
F. F.
,
Guo
,
S. C.
,
Wang
,
Y. A.
, and
Liu
,
W. P.
,
2016
, “
A Semi-Analytical Method for the Springback Prediction of Thick-Walled 3D Tubes
,”
Mater. Des.
,
99
(
5
), pp.
57
67.
10.1016/j.matdes.2016.03.026
You do not currently have access to this content.