To ensure a reliable power supply with a minimum environmental impact in the future, further increases in efficiency and flexibility of fossil-fired power plants are major challenges to address in recent R&D activities. In order to counterbalance substantial fluctuations in the electricity grid due to the rising share of renewable resources, frequent start-ups and shut-downs of turbomachinery will be claimed by the market. Hence, along with the development of advanced materials for elevated steam parameters, contemplations with respect to altered boundary conditions of established materials, e.g., for bolted pipe flange connections, are required. In this paper, a selection of results from a recently finished research work on stress relaxation will be presented. Together with European power plant component manufacturers, a newly developed test rig comprising a scaled intermediate pressure (IP) steam turbine pipe flange now allows investigations under near-service conditions. Before, throughout, and after performance of the experiments, an extensive measurement setup enables the examination of effects that cannot be studied in standardized relaxation tests. Within this work, a loss in bolt pretension of up to almost 50% over a comparatively short period of experimental time was observed. By means of numerical calculations, creep deformation in the transition areas between pipe and flange plate sections was identified to be a major originator of these pretension drops. Particularly, good correlations between experiments and finite element method (FEM) simulations could be achieved through the implementation of enhancements concerning the fitting strategy of the Graham–Walles-type creep model which was used.

References

References
1.
VGB PowerTech e.V.
,
2004
, “
VGB-R 505 Richtlinie für Schrauben im Bereich hoher Temperaturen
,” VGB PowerTech Service GmbH, Essen, Germany.
2.
European Committee for Standardization CEN
,
2014
, “
Flanges and Their Joints—Design Rules for Gasketed Circular Flange Connections—Part 1: Calculation
,” Beuth Verlag GmbH, Berlin, Germany, Standard No. EN 1591-1.
3.
European Committee for Standardization CEN
,
2014
, “
Flanges and Their Joints—Gasket Parameters and Test Procedures Relevant to the Design Rules for Gasketed Circular Flange Connections
,” Beuth Verlag GmbH, Berlin, Germany, Standard No. EN 13555.
4.
The Association of German Engineers (VDI)
,
2003
, “
Part 1: Systematic Calculation of High Duty Bolted Joints
,” Beuth Verlag GmbH, Berlin, Germany, Standard No. VDI 2230.
5.
ASME
,
2013
, “
Rules for Construction of Pressure Vessels (ASME Bolier & Pressure Vessel Code)
,” American Society of Mechanical Engineers, New York, Standard No. ASME BPVC-VIII-1/-2.
6.
ASME
,
2013
, “
Pipe Flanges and Flanged Fittings: NPS 1/2 Through NPS 24 Metric/Inch Standard
,” American Society of Mechanical Engineers, New York, Standard No. ASME B16.5-2013.
7.
ASME
,
2016
, “
Power Piping
,” American Society of Mechanical Engineers, New York, Standard-No. ASME B31.1-2016.
8.
ASME
,
2013
, “
Valves—Flanged, Threaded and Welding End
,” American Society of Mechanical Engineers, New York, Standard No. ASME B16.34-2013.
9.
Adin Mann III
,
J.
,
Hilsabeck
,
J.
,
Mckoon
,
C.
, and
Jackson
,
C.
,
2014
, “
Bolted Flanged Joint Creep/Relaxation Results at High Temperatures
,”
ASME
Paper No. PVP2014-28261.
10.
ASME Standards Technology, LLC
,
2010
, “
Bolted Flanged Connections in Elevated Temperature Service
,” ASME, New York, Standard No. STP-PT-036.
11.
Brown
,
W.
,
2010
, “
High Temperature Design of PVP Bolted Flanged Joints
,” ASME Paper No. PVP2010-25802.
12.
Brown
,
W.
,
2015
, “
Recent Advances in PVP Bolted Joint Technology
,”
Procedia Eng.
,
130
, pp.
158
167
.
13.
Brown
,
W.
, and
Lim
,
T.-Y.
,
2017
, “
Quantifying Bolt Relaxation During High Temperature Operation
,” ASME Paper No. PVP2017-65550.
14.
Purper
,
H.
,
2002
, “
Experimentelle und numerische Untersuchung des Relaxationsverhaltens von Rohrflanschverbindungen
,” Dissertation, Universität Stuttgart, Stuttgart, Germany.
15.
Maile
,
K.
, and
Klenk
,
A.
,
1999
, “
Numerical Analysis of High Temperature Pipe Flanges
,” Analysis of Bolted Joints, Aug. 1–5, pp.
153
160
.
16.
Gengenbach
,
T.
,
2003
, “
Relaxationsverhalten von Rohrflanschen aus 9% Chrom-Stahl
,” Dissertation, Universität Stuttgart, Stuttgart, Germany.
17.
Gengenbach
,
T.
,
Roos
,
E.
, and
Klenk
,
A.
,
2003
, “
Relaxation Behaviour of Flanged Joints Consisting of 9% Chromium Steels
,” Eighth International Symposium on Advanced Materials, Islamabad, Pakistan, Sept. 8–11, pp.
337
342
.
18.
Leibing
,
B.
,
Hahn
,
P.
,
Klenk
,
A.
,
Scholz
,
A.
, and
Schwienheer
,
M.
,
2016
, “
Optimierte Beschreibung des Relaxationsverhaltens von Schrauben- und Flanschverbindungen unter wechselnden, betriebsnahen Beanspruchungen
,” MPA Stuttgart/IfW Darmstadt, Germany, Report No. 17146 N.
19.
Hahn
,
P.
,
Leibing
,
B.
,
Scholz
,
A.
,
Schwienheer
,
M.
, and
Klenk
,
A.
,
2017
, “
Optimierte Beschreibung des Relaxationsverhaltens von Schrauben- und Flanschverbindungen bei wechselnden, betriebsnahen Beanspruchungen
,” FVV Spring Conference, Bad Neuenahr, Germany, Mar. 30, conference transcript R579, pp.
89
123
.
20.
Leibing
,
B.
,
Buhl
,
P.
,
Klenk
,
A.
, and
Reigl
,
M.
,
2015
, “
Optimierte Ansätze zur Modellierung und experimentellen Untersuchung des Relaxationsverhaltens von Hochtemperatur-Flansch- und Schraubenwerkstoffen
,”
38th Lecture Event FVWHT Within VDEh
, Düsseldorf, Germany, Nov. 27, pp.
1
13
.
21.
Staubli
,
M.
,
Hanus
,
R.
,
Weber
,
T.
,
Mayer
,
K.-H
, and
Kern
,
T.-U.
,
2006
, “
The European Efforts in Development of New High Temperature Casing Materials—COST 536
,”
Materials for Advanced Power Engineering
(Proceedings of the 8th Liège Conference Part II, Vol. 53)
J. Lecomte-Beckers, M. Carton, F. Schubert, and P. J. Ennis
, eds., Schriften des Forschungszentrums Jülich Reihe Energietechnik,
Jülich, Belgium/Germany
, pp.
855
870
.
22.
European Committee for Standardization CEN
,
2014
, “
Steels and Nickel Alloys for Fasteners With Specified Elevated and/or Low Temperature Properties
,” Beuth Verlag GmbH, Berlin, Germany, Standard No. EN 10269.
23.
Graham
,
A.
, and
Walles
,
K. F. A.
,
1955
, “
Relationships Between Long- and Short-Time Creep and Tensile Properties of a Commercial Alloy
,”
J. Iron Steel Inst.
,
179
, pp.
105
120
.
24.
Klenk
,
A.
,
Ringel
,
M.
,
Stelling
,
O.
,
Rauch
,
M.
,
Maile
,
K.
, and
Roos
,
E.
,
2005
, “
Implementierung von fortgeschrittenen Stoffgesetzen in Software-Werkzeuge zur Berechnung von Bauteilen unter Hochtemperaturbeanspruchung
,”
28th Lecture Event FVWHT Within VDEh
, Düsseldorf, Germany, Nov. 25, pp.
25
38
.
25.
Ringel
,
M.
,
Roos
,
E.
,
Maile
,
K.
, and
Klenk
,
A.
,
2005
, “
Constitutive Equations of Adapted Complexity for High Temperature Loading
,”
First ECCC Conference on Creep and Fracture in High Temperature Components
, London, UK, Sept. 12–14, pp.
638
648
.
26.
Xu
,
H.
,
Roos
,
E.
,
Klenk
,
A.
, and
Maile
,
K.
,
1999
, “
Description of Deformation and Failure Behavior of a Nut-Bolt-Assembly by Means of a Viscoplastic Constitutive Equation
,” Analysis of Bolted Joints, Aug. 1–5, pp.
95
102
.
You do not currently have access to this content.