Reservoir-pipe-valve (RPV) systems are widely used in many industrial processes. The pressure in an RPV system plays an important role in the safe operation of the system, especially during the sudden operations such as rapid valve opening or closing. To investigate the pressure response, with particular interest in the pressure fluctuations in an RPV system, a multidimensional and multiscale model combining the method of characteristics (MOC) and computational fluid dynamics (CFD) method is proposed. In the model, the reservoir is modeled as a zero-dimensional virtual point, the pipe is modeled as a one-dimensional system using the MOC, and the valve is modeled using a three-dimensional CFD model. An interface model is used to connect the multidimensional and multiscale model. Based on the model, a transient simulation of the turbulent flow in an RPV system is conducted in which not only the pressure fluctuation in the pipe but also the detailed pressure distribution in the valve is obtained. The results show that the proposed model is in good agreement when compared with a high fidelity CFD model used to represent both large-scale and small-scale spaces. As expected, the proposed model is significantly more computationally efficient than the CFD model. This demonstrates the feasibility of analyzing complex RPV systems within an affordable computational time.

References

References
1.
Streeter
,
V. L.
, and
Sou
,
L.
,
1993
,
Fluid Transients in Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
, pp.
21
65
.
2.
Tijsseling
,
A. S.
, and
Lavooij
,
C. S. W.
,
1990
, “
Waterhammer With Fluid-Structure Interaction
,”
Appl. Sci. Res.
,
47
(
3
), pp.
273
85
.
3.
Vardy
,
A. E.
, and
Tijsseling
,
A. S.
,
2015
, “Method of Characteristics: (Why) is it So Good?,”
12th International Conference on Pressure Surges
, Dublin, Ireland, Nov. 18–20.https://www.researchgate.net/publication/292980982_Method_of_characteristics_Why_is_it_so_good
4.
Tijsseling
,
A. S.
,
2003
, “
Exact Solution of Linear Hyperbolic Four-Equation System in Axial Liquid-Pipe Vibration
,”
J. Fluids Struct.
,
18
(
2
), pp.
179
196
.
5.
Tijsseling
,
A. S.
,
1996
, “
Fluid-Structure Interaction in Liquid-Filled Pipe Systems: A Review
,”
J. Fluids Struct.
,
10
(
2
), pp.
109
146
.
6.
Johnston
,
N.
,
Pan
,
M.
,
Kudzma
,
S.
, and
Wang
,
P.
,
2014
, “
Use of Pipeline Wave Propagation Model for Measuring Unsteady Flow Rate
,”
ASME J. Fluids Eng.
,
136
(
3
), p.
031203
.
7.
Xu
,
Y.
, and
Jiao
,
Z.
,
2017
, “
Exact Solution of Axial Liquid-Pipe Vibration With Time-Line Interpolation
,”
J. Fluids Struct.
,
70
, pp.
500
518
.
8.
Ferràs
,
D.
,
Manso
,
P. A.
,
Schleiss
,
A. J.
, and
Covas
,
D. I. C.
,
2016
, “
Fluid-Structure Interaction in Straight Pipelines: Friction Coupling Mechanisms
,”
Comput. Struct.
,
175
, pp.
74
90
.
9.
Song
,
X. G.
,
Wang
,
L.
, and
Park
,
Y. C.
,
2010
, “
Transient Analysis of a Spring-Loaded Pressure Safety Valve Using Computational Fluid Dynamics (CFD)
,”
ASME J. Pressure Vessel Technol.
,
132
(
5
), p.
054501
.
10.
Song
,
X.
,
Cui
,
L.
,
Cao
,
M.
,
Cao
,
W.
,
Park
,
Y.
, and
Dempster
,
W. M.
,
2014
, “
A CFD Analysis of the Dynamics of a Direct-Operated Safety Relief Valve Mounted on a Pressure Vessel
,”
Energy Convers. Manage.
,
81
(
2
), pp.
242
246
.
11.
Song
,
X. G.
,
Wang
,
L. T.
,
Park
,
Y. C.
, and
Sun
,
W.
,
2015
, “
A Fluid-Structure Interaction Analysis of the Spring-Loaded Pressure Safety Valve During Popping Off
,”
Procedia Eng.
,
130
, pp.
87
94
.
12.
Hős
,
C.
,
Bazsó
,
C.
, and
Champneys
,
A.
,
2015
, “
Model Reduction of a Direct Spring-Loaded Pressure Relief Valve With Upstream Pipe
,”
IMA J. Appl. Math.
,
80
(
4
), pp.
1009
1024
.
13.
Yang
,
L.
,
Wang
,
Z.
,
Dempster
,
W.
,
Yu
,
X.
, and
Tu
,
S.-T.
,.
2017
, “
Experiments and Transient Simulation on Spring-Loaded Pressure Relief Valve Under High Temperature and High Pressure Steam Conditions
,”
J. Loss Prev. Process Ind.
,
45
, pp.
133
146
.
14.
Ye
,
Q.
, and
Chen
,
J.
,
2009
, “
Dynamic Analysis of a Pilot-Operated Two-Stage Solenoid Valve Used in Pneumatic System
,”
Simul. Modell. Pract. Theory
,
17
(5), pp.
794
816
.
15.
Darby
,
R.
, and
Aldeeb
,
A. A.
,
2014
, “
The Dynamic Response of Pressure Relief Valves in Vapor or Gas Service. Part III: Model Validation
,”
J. Loss Prev. Process Ind.
,
31
, pp.
133
141
.
16.
Yang
,
S.
,
Chen
,
X.
,
Wu
,
D.
, and
Yan
,
P.
,.
2015
, “
Dynamic Analysis of the Pump System Based on MOC–CFD Coupled Method
,”
Ann. Nucl. Energy
,
78
, pp.
60
69
.
17.
Wang
,
C.
,
Nilsson
,
H.
,
Yang
,
J.
, and
Petit
,
O.
,
2017
, “
1D-3D Coupling for Hydraulic System Transient Simulations
,”
Comput. Phys. Commun.
,
210
, pp.
1
9
.
18.
Mandair
,
S.
,
Karney
,
B.
,
Magnan
,
R.
, and
Morissette
,
J.-F.
,
2018
, “
Comparing Pure CFD and 1-D Solvers for the Classic Water Hammer Models of a Pipe-Reservoir System
,”
First International WDSA/CCWI 2018 Joint Conference
, Kingston, ON, Canada, July 23–25, pp.
1
8
.https://ojs.library.queensu.ca/index.php/wdsa-ccw/article/view/12390
19.
Galindo
,
J.
,
Tiseira
,
A.
,
Fajardo
,
P.
, and
Navarro
,
R.
,
2011
, “
Coupling Methodology of 1D Finite Difference and 3D Finite Volume CFD Codes Based on the Method of Characteristics
,”
Math. Comput. Model.
,
54
(
7–8
), pp.
1738
1746
.
20.
Fajardo
,
D. P.
,
2012
, “
Methodology for the Numerical Characterization of a Radial Turbine Under Steady and Pulsating Flow
,”
Ph.D. thesis
, Universitat Politècnica de València, València, Spain.https://riunet.upv.es/bitstream/handle/10251/16878/tesisUPV3883.pdf
21.
ANSYS
,
2016
, “
ANSYS 18.0 Help
,” ANSYS, Canonsburg, PA.
22.
Chaudhry
,
M. H.
,
2014
,
Applied Hydraulics Transients
,
Springer-Verlag
,
New York
, pp.
55
108
.
23.
Vardy
,
A. E.
,
Hwang
,
K. L.
, and
Hwang
,
K.-L.
,
1991
, “
A Characteristics Model of Transient Friction in Pipes
,”
J. Hydraul. Res.
,
29
(
5
), pp.
669
684
.
24.
Brunone
,
B.
,
Golia
,
U. M.
, and
Greco
,
M.
,
1991
, “
Some Remarks on the Momentum Equation for Fast Transients
,”
International Meeting on Hydraulic Transients With Water Column Separation (Nineth Round Table of the IAHR Group)
, Valencia, Spain, Sept. 4–6, pp.
201
209
.
25.
Ramos
,
H.
,
Covas
,
D.
,
Borga
,
A.
, and
Loureiro
,
D.
,
2004
, “
Surge Damping Analysis in Pipe Systems: Modelling and Experiments
,”
J. Hydraul. Res.
,
42
(
4
), pp.
413
425
.
26.
Zielke
,
W.
,
1968
, “
Frequency-Dependent Friction in Transient Pipe Flow
,”
ASME J. Basic Eng.
,
90
(
1
), p.
109
.
27.
Trikha
,
A. K.
,
1975
, “
An Efficient Method for Simulating Frequency-Dependent Friction in Transient Liquid Flow
,”
ASME J. Fluids Eng.
,
97
(
1
), pp.
97
105
.
28.
Vardy
,
A. E.
, and
Hwang
,
K.-L.
,
1993
, “
A Weighting Function Model of Transient Turbulent Pipe Friction
,”
J. Hydraul. Res.
,
31
(
4
), pp.
533
548
.
29.
Vardy
,
A. E.
, and
Brown
,
J. M. B.
,
2004
, “
Transient Turbulent Friction in Fully Rough Pipe Flows
,”
J. Sound Vib.
,
270
(
1–2
), pp.
233
257
.
30.
Haaland
,
S. E.
,
1983
, “
Simple and Explicit Formulas for the Friction-Factor in Turbulent Pipe Flow, Transactions of the ASME
,”
ASME J. Fluids Eng.
,
105
(
1
), pp.
89
90
.
31.
Anderson
,
J. D.
, Jr.
,
1995
,
Computational Fluid Dynamics: The Basics With Applications
,
Mc-Graw
, New York, pp.
3
93
.
32.
Wu
,
D.
,
Yang
,
S.
,
Wu
,
P.
, and
Wang
,
L.
,
2011
, “
MOC-CFD Coupled Approach for the Analysis of the Fluid Dynamic Interaction Between Water Hammer and Pump
,”
J. Hydraul. Eng.
,
141
(
6
), pp.
1
8
.https://ascelibrary.org/doi/full/10.1061/%28ASCE%29HY.1943-7900.0001008
33.
Munson
,
B. R.
,
Okiishi
,
T. H.
,
Hubsch
,
W. W.
, and
Rothmayer
,
A. P.
,
2013
,
Fundamentals of Fluid Mechanics
,
7th ed.
,
Wiley
,
New York
, pp.
400
431
.
34.
White
,
F. M.
,
2009
,
Fluid Mechanics
,
6th ed.
,
McGraw-Hill College
, Singapore, pp.
347
360
.
35.
Wang
,
D.
, and
Bai
,
C.
,
2018
, “
The Parametric Modeling of Local Resistance and Pressure Drop in a Rotary Ball Valve
,”
ASME. J. Fluids Eng.
,
140
(
3
), p.
031204
.
36.
Kaneko
,
S.
,
Nakamura
,
T.
,
Inada
,
F.
,
Kato
,
M.
,
Ishihara
,
K.
,
Nishihara
,
T.
,
Mureithi
,
N.
, and
Langthjem
,
M.
,
2013
,
Flow-Induced Vibrations: Classifications and Lessons From Practical Experiences
,
Academic Press
, New York, pp.
197
275
.
37.
Zhenyu
,
X.
,
Xuhong
,
M.
, and
Hai
,
Z.
,
2015
, “
The Research on Pulsation of Pump Pressure in Water Mist System
,”
Energy Procedia.
,
66
, pp.
73
76
.
38.
Wahba
,
E. M.
,
2016
, “
On the Propagation and Attenuation of Turbulent Fluid Transients in Circular Pipes
,”
ASME J. Fluids Eng.
,
138
(
3
), p.
031106
.
39.
Liou
,
J. C. P.
,
2016
, “
Understanding Line Packing in Frictional Water Hammer
,”
ASME J. Fluids Eng.
,
138
(
8
), p.
081303
.
You do not currently have access to this content.