Centrifugal pumps are one of the significant consumers of electricity and are one of the most commonly encountered rotodynamic machines in domestic and industrial applications. Centrifugal pumps operating at off-design conditions are often subject to different periodic flow randomness, which in turn hampers functionality and performance of the pump. These limitations can be overcome by modification in the conventional design of different components of a centrifugal pump, which can assuage flow randomness and instabilities, reconstitute flow pattern and minimize hydraulic flow losses. In this article, flow vulnerabilities like pressure and flow inconsistency, recirculation, boundary layer separation, adverse rotor–stator interaction, and the effects on operation and performance of a centrifugal pump are reviewed. This article also aims to review design modification attempts made by different researchers such as impeller trimming, rounding, geometry modification of different components, providing microgrooves on the impeller and others. Based on the findings of this study, it is concluded that some design modifications of the impeller, diffuser, and casing result in improvement of functionality, efficiency, and reduction in pressure fluctuations, flow recirculation, and vibrations. Design modifications should improve the performance without hampering functionality and useful operational range of the pump. Considerable research is still necessary to continue understanding and correlating flow physics and design modifications for the pump impeller, diffuser, and casing.

References

References
1.
Engin
,
T.
, and
Gur
,
M.
,
2001
, “
Performance Characteristics of a Centrifugal Pump Impeller With Running Tip Clearance Pumping Solid-Liquid Mixtures
,”
ASME J. Fluids Eng.
,
123
(
3
), pp.
532
538
.
2.
Vogelesang
,
H.
,
2008
, “
An Introduction to Energy Consumption in Pumps
,”
World Pumps
,
2008
(
496
), pp.
28
31
.
3.
Cellucci
,
E.
,
2013
, “
Valve Accuracy and Flow Capacity
,” Modern Pumping Today, New Jersey.
4.
Bachus
,
L.
,
2013
, “
Unwritten Laws of Pump Operation
,”
World Pumps
,
2013
(
5
), pp.
38
39
.
5.
Thamsen
,
P. U.
, and
Pöhler
,
M.
,
2017
, “
Assessing Pump Functionality and Efficiency
,”
World Pumps
,
2017
(
6
), pp.
38
–40.
6.
McKee
,
K. K.
,
Forbes
,
G.
,
Mazhar
,
I.
,
Entwistle
,
R.
, and
Howard
,
I.
,
2011
, “
A Review of Major Centrifugal Pump Failure Modes With Application to the Water Supply and Sewerage Industries
,”
ICOMS Asset Management Conference
, Gold Coast, Queensland, Australia.
7.
Shah
,
S. R.
,
Jain
,
S. V.
,
Patel
,
R. N.
, and
Vakhera
,
V. J.
,
2013
, “CFD
for Centrifugal Pump: A Review of the State of the Art
,”
Procedia Eng.
,
51
, pp.
715
720
.
8.
Jain
,
S.
, and
Patil
,
R.
,
2013
, “
Investigations on Pump Running in Turbine Mode: A Review of the State-of-the-Art
,”
Renewable Sustainable Energy Rev.
,
30
, pp.
841
868
.
9.
Mahaffey
,
R. M.
, and
Van Vuuren
,
S. J.
,
2014
, “
Review of Pump Suction Reducer Selection: Eccentric or Concentric Reducer
,”
J. South Afr. Inst. Civ. Eng.
,
56
, pp.
65
76
.
10.
patel
,
M.
,
sen
,
P. K.
, and
Sahu
,
G.
,
2015
, “
To Review on Energy Consumption in Centrifugal Pump
,”
Int. J. Innovative Res. Technol.
,
2
(
5
), pp.
12
15
.http://www.ijirt.org/article?manuscript=142619
11.
Salunkhe
,
A.
,
Todkar
,
R.
, and
Relekar
,
K.
,
2015
, “
Improvement of Efficiency of Centrifugal Pump Through Modifications in Suction Manifold
,”
Int. J. Innovations Eng. Res. Technol.
,
2
(
12
), (epub).
12.
Bowade
,
A.
, and
Parashar
,
C.
,
2015
, “
A Review of Different Blade Design Methods for Radial Flow Centrifugal Pump
,”
Int. J. Sci. Eng. Res.
,
3
(
7
), pp.
24
27
.
13.
Binamaa
,
M.
,
Muhirwaa b
,
A.
, and
Bisengimanac
,
E.
,
2016
, “
Cavitation Effects in Centrifugal Pumps—A Review
,”
Int. J. Eng. Res. Appl.
,
6
(
5
), pp.
52
63
.http://www.ijera.com/papers/Vol6_issue5/Part%20-%201/K060501052063.pdf
14.
Kalaiselvan
,
A. S. V.
,
Subramanian
,
U.
,
Shanmugam
,
P.
, and
Hanigovaski
,
N.
, 2016, “
Comprehensive Review on Energy Efficiency Enhancement Initiatives in Centrifugal Pumping System
,”
Appl. Energy
,
181
, pp.
495
513
.
15.
Raut
,
P.
,
Patil
,
D.
, and
Wadnere
,
G.
,
2017
, “
Review of Optimization of Mixed Flow Impeller Using Ansys CFX
,”
IOSR J. Mech. Civ. Eng.
, (epub).
16.
Bhosale
,
A.
, and
Gore
,
P. N.
,
2017
, “
A Review Paper on Improvement of Impeller Design a Centrifugal Pump Using FEM and CFD
,”
Int. J. Innovative Res. Sci. Technol.
,
4
(
4
), (epub).
17.
Gülich
,
J. F.
,
2007
,
Centrifugal Pumps
,
Springer
,
Berlin
.
18.
Shi
,
B.
,
Wei
,
J.
, and
Zhang
,
Y.
,
2017
, “
A Novel Experimental Facility for Measuring Internal Flow of Solid-Liquid Two-Phase Flow in a Centrifugal Pump by PIV
,”
Int. J. Multiphase Flow
,
89
, pp.
266
276
.
19.
Pei
,
J.
,
Yuan
,
S.-Q.
,
Li
,
X.-J.
, and
Yuan
,
J.-P.
,
2014
, “
Numerical Prediction of 3-D Periodic Flow Unsteadiness in a Centrifugal Pump Under Part Load Condition
,”
J. Hydrodyn. Ser B.
,
26
(
2
), pp.
257
263
.
20.
Wo
,
A. M.
, and
Bons
,
J. P.
,
1994
, “
Flow Physics Leading to System Instability in a Centrifugal Pump
,”
ASME J. Turbomach.
,
116
(
4
), pp.
612
620
.
21.
Chalghoum
,
I.
,
Elaoud
,
S.
,
Akrout
,
M.
, and
Taieb
,
E. H.
,
2016
, “
Transient Behavior of a Centrifugal Pump During Starting Period
,”
Appl. Acoust.
,
109
, pp.
82
89
.
22.
Abramian
,
M.
, and
Howard
,
J. H. G.
,
1994
, “
Experimental Investigation of the Steady and Unsteady Relative Flow in a Model Centrifugal Impeller Passage
,”
ASME J. Turbomach.
,
116
(
2
), pp.
269
279
.
23.
Ubaldi
,
M.
,
Zunino
,
P.
, and
Cattanei
,
A.
,
1993
, “
Relative Flow and Turbulence Measurements Downstream of a Backward Centrifugal Impeller
,”
ASME J. Turbomach.
,
115
(
3
), pp.
543
551
.
24.
Xiaoran
,
Z.
,
Yexiang
,
X.
,
Zhengwei
,
W.
,
Yongyao
,
L.
, and
Lei
,
C.
,
2017
, “
Unsteady Flow and Pressure Pulsation Characteristics Analysis of Rotating Stall in Centrifugal Pumps Under Off Design Conditions
,”
ASME J. Fluids Eng.
,
140
(
2
), p.
021105
.
25.
Couzinet
,
A.
,
Gros
,
L.
, and
Pierrat
,
D.
,
2015
, “
Part Load Flow and Hydrodynamic Instabilities of a Centrifugal Pump—Part 2: Numerical Simulations
,”
ASME
Paper No. AJKFluids2015-33445.
26.
Gros
,
L.
, and
Pierrat
,
A. C. D.
,
2015
, “
Part Load Flow and Hydrodynamic Instabilities of a Centrifugal Pump—Part 1: Experimental Investigations
,”
ASME
Paper No. AJKFluids2015-33444.
27.
Zuo
,
Z.
, and
Liu
,
S.
,
2017
, “
Flow-Induced Instabilities in Pump-Turbines in China
,”
Engineering
,
3
(
4
), pp.
504
511
.
28.
Takemura
,
T.
, and
Goto
,
A.
,
1996
, “
Experimental and Numerical Study of Three-Dimensional Flows in a Mixed-Flow Pump Stage
,”
ASME J. Turbomach.
,
118
(
3
), pp.
552
561
.
29.
Dong
,
R.
,
Chu
,
S.
, and
Katz
,
J.
,
1997
, “
Effect of Modification to Tongue and Impeller Geometry on Unsteady Flow, Pressure Fluctuations and Noise in a Centrifugal Pump
,”
ASME J. Turbomach.
,
119
(
3
), pp.
506
515
.
30.
Engeda
,
A.
, and
Rautenberg
,
M.
,
1987
, “
Comparisons of the Relative Effect of Tip Clearance on Centrifugal Impellers
,”
ASME J. Turbomach.
,
109
(
4
), pp.
545
549
.
31.
Barrio
,
R.
,
Blanco
,
E.
,
Parrondo
,
J.
,
Gonzalez
,
J.
, and
Fernandez
,
J.
,
2008
, “
The Effect of Impeller Cutback on the Fluid—Dynamic Pulsations and Load at the Blade-Passing Frequency in a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
130
(
11
), p.
111102
.
32.
Ayad
,
A. F.
,
Abdalla
,
H.
,
Abdalla
,
A.
, and
El-Azm Aly
,
A. A.
,
2015
, “
Effect of Semi-Open Impeller Side Clearance on the Centrifugal Pump Performance Using CFD
,”
Aerosp. Sci. Technol.
,
47
, pp.
247
255
.
33.
Farid Ayad
,
A.
,
Abdalla
,
H. M.
, and
Abou El-Azm
,
A.
,
2015
, “
Study of the Effect of Impeller Side Clearance on the Centrifugal Pump Performance Using CFD
,”
ASME
Paper No. IMECE2015-50756.
34.
Shiels
,
S.
,
1999
, “
When Trimming Centrifugal Pump Impeller Can Save Energy and Increase Flow Rate
,”
World Pumps
,
1999
(
398
), pp.
37
40
.
35.
Šavar
,
M.
,
Kozmar
,
H.
, and
Sutlović
,
I.
,
2009
, “
Improving Centrifugal Pump Efficiency by Impeller Trimming
,”
Desalination
,
249
(
2
), pp.
654
659
.
36.
Sun-Sheng
,
Y.
,
Fan-Yu
,
K.
,
Wan-Ming
,
J.
, and
Xiao-Yun
,
Q.
,
2012
, “
Effect of Impeller Trimming Influencing Pump as Turbine
,”
Comput. Fluids
,
67
, pp.
72
78
.
37.
Jain
,
S. V.
,
Swarnkar
,
A.
,
Motwani
,
K. H.
, and
Patel
,
R. N.
,
2015
, ” “
Effects of Impeller Diameter and Rotational Speed on Performance of Pump Running in Turbine Mode
,”
Energy Convers. Manage.
,
89
, pp.
808
824
.
38.
Zhou
,
P.
,
Tang
,
J.
,
Mou
,
J.
, and
Zhu
,
B.
, 2016, “
Effect of Impeller Trimming on Performance
,”
World Pumps
, pp.
38
41
.
39.
Shojaeefard
,
M. H.
,
Tahani
,
M.
,
Ehghaghi
,
M. B.
,
Fallahian
,
M. A.
, and
Beglari
,
M.
,
2012
, ” “
Numerical Study of the Effects of Some Geometric Characteristics of a Centrifugal Pump Impeller That Pumps a Viscous Fluid
,”
Comput. Fluid
,
60
, pp.
61
70
.
40.
Sekino
,
Y.
, and
Watanabe
,
H.
,
2016
, “
Design Optimization of Double Volute Suction Pump
,”
World Pumps
,
2016
(
5
), pp 32–35.
41.
Chehhat
,
A.
, and
Ameur
,
M. S.
,
2015
, “
Blade Exit Angle Impact on Turbulent Fluid Flow and Performance of Centrifugal Pump Using CFD
,”
Third International Renewable and Sustainable Energy Conference (IRSEC)
, Marrakech, Morocco, Dec. 10–13.
42.
Hassan
,
F. A.
,
Abdalla
,
H. M.
, and
Abou El-Azm Aly
,
A.
,
2017
, “
Centrifugal Pump Performance Enhancement by Blade Shape Modification
,”
ASME
Paper No. GT2017-63023.
43.
Tan
,
M.-G.
,
Liu
,
H.-L.
,
Yuan
,
S.-Q.
,
Wang
,
Y.
, and
Wang
,
K.
,
2009
, “
Effect of Blade Outlet Width on Flow Field and Characteristics of Centrifugal Pump
,”
ASME
Paper No. FEDSM2009-78064.
44.
Gao
,
B.
,
Zhang
,
N.
,
Li
,
Z.
,
Ni
,
D.
, and
Yang
,
M.
,
2015
, “
Influence of the Blade Trailing Edge Profile on the Performance and Unsteady Pressure Pulsations in a Low Specific Speed Centrifugal Pump
,”
ASME J. Fluids Eng.
,
138
(
5
), p.
051106
.
45.
Shigemitsu
,
T.
,
Fukutomi
,
J.
, and
Kaji
,
K.
,
2011
, “
Influence of Blade Outlet Angle and Blade Thickness on Performance and Internal Flow of Mini Centrifugal Pump
,”
ASME
Paper No. AJK2011-06035.
46.
Shiyang
,
L.
,
Peng
,
W.
, and
Dazhuan
,
W.
,
2016
, “
Hydraulic Optimization and Loss Analysis of a Low Specific Speed Centrifugal Pump With Variable-Thickness Blades
,”
ASME
Paper No. FEDSM2016-7814.
47.
Singh
,
P.
, and
Nestmann
,
F.
,
2011
, “
Internal Hydraulic Analysis of Impeller Rounding in Centrifugal Pumps as Turbines
,”
Exp. Therm. Fluid Sci.
,
35
(
1
), pp.
121
134
.
48.
Doshi
,
A.
,
Channiwala
,
S.
, and
Singh
,
P.
,
2017
, “
Inlet Impeller Rounding in Pumps as Turbines: An Experimental Study to Investigate the Relative Effects of Blade and Shroud Rounding
,”
Exp. Therm. Fluid Sci.
,
82
, pp.
333
348
.
49.
Liu
,
H.
,
Wang
,
Yuan
,
K. S.
,
Tan
,
M.
,
Wang
,
Y.
, and
Dong
,
L.
,
2013
, “
Multicondition Optimization and Experimental Measurements of a Double–Blade Centrifugal Pump Impeller
,”
ASME J. Fluids Eng.
,
135
(
1
), p.
011103
.
50.
Bellary
,
S. A. I.
, and
Samad
,
A.
,
2014
, “
Improvement of Efficiency by Design Optimization of a Centrifugal Pump Impeller
,”
ASME
Paper No. GT2014-25217.
51.
Hermez
,
M. Y.
,
Jawad
,
B. A.
,
Liu
,
L.
,
Fernandez
,
V.
,
Yee
,
K.
, and
Oklejas
,
E.
,
2016
, “
Comparison of Inlet Curved Disk Arrangements for Suppression of Recirculation in Centrifugal Pump Impellers
,”
ASME
Paper No. IMECE2016-65448.
52.
Hamid Siddique
,
M.
,
Mrinal
,
K. R.
, and
Samad
,
A.
,
2016
, “
Optimization of a Centrifugal Pump Impeller by Controlling Blade Profile Parameters
,”
ASME
Paper No. GT2016-56604.
53.
Shouqi
,
Y.
,
Jinfeng
,
Z.
,
Tang
,
Y.
,
Jianping
,
Y.
, and
Yuedeng
, F.,
2009
, “
Research on the Design Method of the Centrifugal Pump With Splitter Blades
,”
ASME
Paper No. FEDSM2009-78101.
54.
Ye
,
L.
,
Yuan
,
S.
,
Zhang
,
J.
, and
Yuan
,
Y.
,
2012
, “
Effects of Splitter Blades on the Unsteady Flow of a Centrifugal Pump
,”
ASME
Paper No. FEDSM2012-72155.
55.
Al-Qutub
,
A. M.
,
Khalifa
,
A. E.
, and
Al-Sulaiman
,
F. A.
,
2011
, “
Exploring the Effect of V-Shaped Cut at Blade Exit of a Double Volute Centrifugal Pump
,”
ASME J. Pressure Vessel Technol.
,
134
(
2
), p.
021301
.
56.
Hucan
,
H.
,
Yongxue
,
Z.
,
Zhenlin
,
L.
,
Xin
,
Z.
, and
Zizhe
,
W.
,
2014
, “
Hydraulic Design of Inlet Guide Vane and Its Full Flow Passage Numerical Simulation on Centrifugal Pump
,”
ASME
Paper No. IMECE2014-36209.
57.
Abdul Raheem Junaidi
,
M.
,
Laksmikumari
,
N. B. V.
, and
Samad
,
M. A.
,
2015
, “
CFD Simulation to Enhance the Efficiency of Centrifugal Pump by Application of Inner Guide Vanes
,”
Fourth International Conference on Materials Processing and Characterisation (ICMPC 2015)
, Hyderabad, India, Mar. 14–15, pp.
2073
2082
.
58.
Skrzypacz
,
J.
,
2015
, “
Investigating the Impact of Drilled Impellers Design of Rotodynamic Pumps on the Efficiency of the Energy Transfer Process
,”
Chem. Eng. Process.: Process Intensif.
,
87
, pp.
60
67
.
59.
Lei
,
C.
,
Yiyang
,
Z.
,
Zhengwei
,
W.
,
Yexiang
,
X.
, and
Ruixiang
,
L.
,
2015
, “
Effect of Axial Clearance on the Efficiency of a Shrouded Centrifugal Pump
,”
ASME J. Fluids Eng.
,
137
(
7
), p.
071101
.
60.
Shukla
,
S.
,
Roy
,
A. K.
, and
Kumar
,
K.
,
2015
, “
Material Selection for Blades of Mixed Flow Pump Impeller Using ANSYS
,”
Mater. Today Proc.
,
2
(
4–5
), pp.
2022
2029
.
61.
Guo
,
X.-M.
,
Zhu
,
Z.-C.
,
Shi
,
G.-P.
, and
Huang
,
Y.
,
2017
, ” “
Effects of Rotational Speeds on the Performance of a Centrifugal Pump With a Variable-Pitch Inducer
,”
J. Hydrodyn.
,
29
(
5
), pp.
854
862
.
62.
Skrzypacz
,
J.
, and
Bieganowski
,
M.
,
2017
, “
The Influence of Micro Grooves on the Parameters of the Centrifugal Pump Impeller
,”
Int. J. Mech. Sci.
,
144
, pp.
827
835
.
63.
Chen
,
H-X.
,
He
,
J-W.
, and
Liu
,
C.
,
2017
, “
Design and Experiment of the Centrifugal Pump Impellers With Twisted Inlet
,”
J. Hydrodyn.
,
29
(
6
), pp.
1085
1088
.
64.
Wang
,
Y.
,
Pei
,
J.
,
Yuan
,
S.
, and
Wang
,
W.
,
2017
, “
Effect of Baffles in Between Stages on Performance and Flow Characteristics of a Two Stage Split Case Centrifugal Pump
,”
ASME
Paper No. FEDSM2017-69121.
65.
Berten
,
S.
,
Kayal
,
M.
,
DuPont
,
P.
,
Avellan
,
F.
,
Fabre
,
L.
, and
Farhat
,
M.
,
2009
, “
Experimental Investigation of Flow Instabilities and Rotating Stall in a High-Energy Centrifugal Pump Stage
,”
ASME
Paper No. FEDSM2009-78562.
66.
Arndt
,
N.
,
Acosta
,
A. J.
,
Brennen
,
C. E.
, and
Caughey
,
T. K.
,
1990
, ” “
Experimental Investigation of Rotor-Stator Interaction in a Centrifugal Pump With Several Vaned Difusers
,”
ASME J. Turbomach.
,
112
(
1
), pp.
98
108
.
67.
Sala
,
B.
, and
Gaetani
,
P.
,
2011
, “
Flow Field in the Vaned Diffuser of a Centrifugal Pump at Different Vane Setting Angles
,”
ASME
Paper No. AJK2011-06068.
68.
Pavesi
,
G.
,
Ardizzon
,
G.
, and
Cavazzini
,
G.
,
2005
, “
Rotating Instability in a Centrifugal Pump Impeller
,”
ASME
Paper No. IMECE2005-79937.
69.
Jiang
,
W.
,
Li
,
G.
,
Liu
,
P.-F.
, and
Fu
,
L.
,
2016
, “
Numerical Investigation of Clocking Effect on Unsteady Pressure Fluctuations and Radial Forces in Centrifugal Pump With Vaned Diffuser
,”
Int. Commun. Heat Mass Transfer
,
71
, pp.
164
171
.
70.
Wang
,
W.
,
Yuan
,
S.
,
Pei
,
J.
,
Pavesi
,
G.
, and
Gu
,
Y.
,
2016
, “
Experimental Investigation on Influence of Relative Positions Between Diffuser and Volute on Pressure Fluctuation at the Outlet of a Centrifugal Pump
,”
ASME
Paper No. FEDSM2016-7740.
71.
World Pumps, 2018, “
How to Improve Flow in Centrifugal Pump
,” World Pumps,
2018
(
1
) pp.
22
25
.
72.
Tatebayashi
,
Y.
,
Tanaka
,
K.
, and
Kobayashi
,
T.
,
2005
, “
Pump Performance Improvement by Restraining Back Flow in Screw—Type Centrifugal Pump
,”
ASME J. Turbomach.
,
127
(
4
), pp.
755
762
.
73.
Zhu
,
X.
,
Li
,
G.
,
Jiang
,
W.
, and
Fu
,
L.
,
2016
, “
Experimental and Numerical Investigation on Application of Half Vane Diffusers for Centrifugal Pump
,”
Int. Commun. Heat Mass Transfer
,
79
, pp.
114
127
.
74.
Liu
,
T.
,
Zhou
,
P.
,
Zhou
,
X.
,
Zhang
,
F.
, and
Mou
,
J.
,
2017
, “
How to Reduce Major Pressure Fluctuations
,”
World Pumps
,
2017
(
9
), pp.
38
41
.
75.
Zhang
,
N.
,
Yang
,
M. G.
,
Gao
,
B.
,
Li
,
Z.
, and
Ni
,
D.
,
2015
, “
Experimental Investigation on Unsteady Pressure Pulsation in a Centrifugal Pump With Special Slope Volute
,”
ASME J. Fluids Eng.
,
137
(
6
), p.
061103
.
76.
Morgenroth
,
M.
, and
Weaver
,
D. S.
,
1998
, “
Sound Generation by a Centrifugal Pump at Blade Passing Frequency
,”
ASME J. Turbomach.
,
120
(
4
), pp.
736
743
.
77.
Litfin
,
O.
, and
Delgado
,
A.
,
2014
, “
On the Effect of Volute Design on Unsteady Flow and Impeller Volute Interaction in a Centrifugal Pump
,”
ASME
Paper No. FEDSM2014-21533.
78.
Yan
,
P.
,
Wu
,
P.
, and
Wu
,
D.
,
2015
, “
High Efficiency and Low Pressure Fluctuation Redesign of a Centrifugal Pump Based on Unsteady CFD Analysis
,”
ASME
Paper No. AJKFluids2015-34110.
79.
Yan
,
P.
,
Chu
,
N.
, and
Wu
,
D.
,
2017
, “
Computational Fluid Dynamics-Based Pump Redesign to Improve Efficiency and Decrease Unsteady Radial Forces
,”
ASME J. Fluids Eng.
,
139
(
1
), p.
011101
.
80.
Huang
,
S.
,
Qiu
,
G.
,
Su
,
X.
,
Chen
,
J.
, and
Zou
,
W.
,
2017
, “
Performance Prediction of a Centrifugal Pump as Turbine Using Rotor-Volute Matching Principle
,”
Renewable Energy
,
108
, pp.
64
71
.
You do not currently have access to this content.