In recent years, a few new methods of achieving autofrettage in thick-walled hollow cylinders have been developed. Rotational autofrettage is one of the new methods proposed recently for prestressing thick-walled cylinders. The principle of rotational autofrettage is based on inducing plastic deformation in the cylinder at the inner side and at its neighborhood by rotating the cylinder about its own axis at a certain angular velocity and subsequently bringing down it to zero angular velocity. However, the analysis of the process is still in its nascent stage. In order to establish the rotational autofrettage as a potential design procedure for prestressing thick-walled cylinders, accurate modeling of the process is necessary. In this paper, the rotational autofrettage for thick-walled cylinders is analyzed theoretically based on the generalized plane strain assumption. The closed form analytical solutions of the elasto-plastic stresses and strains and the residual stresses after unloading during the rotational autofrettage of a thick-walled cylinder are obtained. In Part II of the paper, the numerical evaluation of the theoretical model will be presented in order to assess its feasibility.

References

References
1.
Jacob
,
L.
,
1907
, “
La Résistance et L'équilibreelastique Des Tubes Frettés
,”
Mémoire de L'artillerieNavale
,
1
(
5
), pp.
43
155
(in French).
2.
Davidson
,
T. E.
,
Barton
,
C. S.
,
Reiner
,
A. N.
, and
Kendall
,
D. P.
,
1962
, “
New Approach to the Autofrettage of High-Strength Cylinders
,”
Exp. Mech.
,
2
(
2
), pp.
33
40
.
3.
Mote
,
J. D.
,
Ching
,
L.K.W.
,
Knight
,
R. E.
,
Fay
,
R. J.
, and
Kaplan
,
M. A.
,
1971
, “
Explosive Autofrettage of Cannon Barrels
,” Army Materials and Mechanics Research Center, Watertown, MA, Report No. AMMRC CR 70-25.
4.
Kamal
,
S. M.
, and
Dixit
,
U. S.
,
2015
, “
Feasibility Study of Thermal Autofrettage Process
,”
Advances in Material Forming and Joining
,
R. G.
Narayanan
and
U.S.
Dixit
, eds.,
Springer
,
New Delhi
, pp.
81
107
.
5.
Kamal
,
S. M.
, and
Dixit
,
U. S.
,
2015
, “
Feasibility Study of Thermal Autofrettage of Thick-Walled Cylinders
,”
ASME J. Pressure Vessel Technol.
,
137
(
6
), p.
061207
.
6.
Zare
,
H. R.
, and
Darijani
,
H.
,
2016
, “
A Novel Autofrettage Method for Strengthening and Design of Thick-Walled Cylinders
,”
Mater. Des.
,
105
, pp.
366
374
.
7.
Zare
,
H. R.
, and
Darijani
,
H.
,
2017
, “
Strengthening and Design of the Linear Hardening Thick-Walled Cylinders Using the New Method of Rotational Autofrettage
,”
Int. J. Mech. Sci.
,
124–125
, pp.
1
8
.
8.
Rees
,
D. W. A.
,
1990
, “
Autofrettage Theory and Fatigue Life of Open-Ended Cylinders
,”
J. Strain Anal. Eng. Des.
,
25
(
2
), pp.
109
121
.
9.
Jahed
,
H.
, and
Dubey
,
R. N.
,
1997
, “
An Axisymmetric Method of Elastic-Plastic Analysis Capable of Predicting Residual Stress Field
,”
ASME J. Pressure Vessel Technol.
,
119
(
3
), pp.
264
273
.
10.
Perl
,
M.
,
1998
, “
An Improved Split-Ring Method for Measuring the Level of Autofrettage in Thick-Walled Cylinders
,”
ASME J. Pressure Vessel Technol.
,
120
(
1
), pp.
69
73
.
11.
Stacey
,
A.
,
MacGillivary
,
H. J.
,
Webster
,
G. A.
,
Webster
,
P. J.
, and
Ziebeck
,
K. R. A.
,
1985
, “
Measurement of Residual Stresses by Neutron Diffraction
,”
J. Strain Anal. Eng. Des.
,
20
(
2
), pp.
93
100
.
12.
Jahed
,
H.
,
Faritus
,
M. R.
, and
Jahed
,
Z.
,
2012
, “
Residual Stress Measurements in an Autofrettage Tube Using Hole Drilling Method
,”
ASME J. Pressure Vessel Technol.
,
134
(
5
), p.
051501
.
13.
Iremonger
,
M. J.
, and
Kalsi
,
G. S.
,
2003
, “
A Numerical Study of Swage Autofrettage
,”
ASME J. Pressure Vessel Technol.
,
125
(
3
), pp.
347
351
.
14.
Bihamta
,
R.
,
Movahhedy
,
M. R.
, and
Mashreghi
,
A. R.
,
2007
, “
A Numerical Study of Swage Autofrettage of Thick-Walled Tubes
,”
Mater. Des.
,
28
(
3
), pp.
804
815
.
15.
Perry
,
J.
, and
Perl
,
M.
,
2008
, “
A 3-D Model for Evaluating the Residual Stress Field Due to Swage Autofrettage
,”
ASME J. Pressure Vessel Technol.
,
130
, pp.
1
6
.
16.
Shufen
,
R.
, and
Dixit
,
U. S.
,
2018
, “
A Review of Theoretical and Experimental Research on Various Autofrettage Processes
,”
ASME J. Pressure Vessel Technol.
,
140
(
5
), p.
050802
.
17.
Kamal
,
S. M.
,
Borsaikia
,
A. C.
, and
Dixit
,
U. S.
,
2016
, “
Experimental Assessment of Residual Stresses Induced by the Thermal Autofrettage of Thick-Walled Cylinders
,”
J. Strain Anal. Eng. Des.
,
51
(
2
), pp.
144
160
.
18.
Kamal
,
S. M.
, and
Dixit
,
U. S.
,
2016
, “
A Comparative Study of Thermal and Hydraulic Autofrettage
,”
J. Mech. Sci. Technol.
,
30
(
6
), pp.
2483
2496
.
19.
Kamal
,
S. M.
, and
Dixit
,
U. S.
,
2016
, “
A Study on Enhancing the Performance of Thermally Autofrettaged Cylinder Through Shrink-Fitting
,”
ASME J. Manuf. Sci. Eng.
,
138
(
9
), p.
094501
.
20.
Kamal
,
S. M.
, and
Dixit
,
U. S.
,
2019
, “
Enhancement of Fatigue Life of Thick-Walled Cylinders Through Thermal Autofrettage Combined With Shrink-Fit
,”
Strengthening and Joining by Plastic Deformation
,
U. S.
Dixit
and
R. G.
Narayanan
, eds.,
Springer
,
Singapore
, pp.
1
30
.
21.
Kamal
,
S. M.
,
Dixit
,
U. S.
,
Roy
,
A.
,
Liu
,
Q.
, and
Silberschmidt
,
V. V.
,
2017
, “
Comparison of Plane-Stress, Generalized-Plane-Strain and 3D FEM Elastic–Plastic Analyses of Thick-Walled Cylinders Subjected to Radial Thermal Gradient
,”
Int. J. Mech. Sci.
,
131–132
, pp.
744
752
.
22.
Shufen
,
R.
, and
Dixit
,
U. S.
,
2017
, “
A Finite Element Method Study of Combined Hydraulic and Thermal Autofrettage Process
,”
ASME J. Pressure Vessel Technol.
,
139
(
4
), p.
041204
.
23.
Shufen
,
R.
, and
Dixit
,
U. S.
,
2018
, “
An Analysis of Thermal Autofrettage Process With Heat Treatment
,”
Int. J. Mech. Sci.
,
144
, pp.
134
145
.
24.
Kamal
,
S. M.
,
2018
, “
Analysis of Residual Stress in the Rotational Autofrettage of Thick-Walled Disks
,”
ASME. J. Pressure Vessel Technol.
,
140
(
6
), p.
061402
.
25.
Chakrabarty
,
J.
,
2006
,
Theory of Plasticity
,
3rd ed.
,
Butterworth-Heinemann
,
Burlington, NJ
.
You do not currently have access to this content.