Structural discontinuities (e.g., nozzle, hole, and groove) widely occur in many high temperature components of nuclear and fossil power plants. In general, the notched component is used for simplified tests and analyses due to the complexity of the introduction of a practical component. In the previous work, the effects of the notch on failure life of the components have been reported experimentally, including the strengthening and weakening effects; however, the internal mechanisms have not been clearly demonstrated. This work reviews the notch effects on the structural strength of the notched components at elevated temperatures under creep, fatigue, and creep-fatigue loading conditions. Experimental phenomena (i.e., strengthening or weakening effects) for typical notched specimens subjected to the above three loading conditions are summarized, and the related factors for notch effects on creep rupture life or cycle to failure of the components are discussed. The mechanisms for the strengthening or weakening effects induced by a notch are described. Evaluation procedures for notch effect analysis under complex loading conditions are also included, and the primary challenges concerning the notch effect are provided for further investigations.

References

References
1.
Gong
,
J. G.
, and
Xuan
,
F. Z.
,
2016
, “
Notch Behavior of Components Under the Stress Controlled Creep-Fatigue Condition: Weakening or Strengthening?
,”
ASME J. Pressure Vessel Technol.
,
139
(
1
), p.
011407
.
2.
Gong
,
J. G.
,
Xia
,
Q. W.
, and
Xuan
,
F. Z.
,
2017
, “
Evaluation of Simplified Creep Design Methods Based on the Case Analysis of Tee Joint at Elevated Temperature
,”
ASME J. Pressure Vessel Technol.
,
139
(
4
), p.
041412
.
3.
Goyal
,
S.
,
Laha
,
K.
,
Das
,
C. R.
,
Panneerselvi
,
S.
, and
Mathew
,
M. D.
,
2014
, “
Effect of Constraint on Creep Behavior of 9Cr-1Mo Steel
,”
Metall. Mater. Trans. A.
,
45A
(
2
), pp.
619
632
.
4.
Isobe
,
N.
,
Yashirodai
,
K.
, and
Murata
,
K.
,
2014
, “
Creep Damage Assessment for Notched Bar Specimens of a Low Alloy Steel Considering Stress Multiaxiality
,”
Eng. Fract. Mech.
,
123
, pp.
211
222
.
5.
Yu
,
Q. M.
,
Wang
,
Y. L.
,
Wen
,
Z. X.
, and
Yue
,
Z. F.
,
2009
, “
Notch Effect and Its Mechanism During Creep Rupture of Nickel-Base Single Crystal Superalloys
,”
Mater. Sci. Eng. A.
,
520
(
1–2
), pp.
1
10
.
6.
Lukas
,
P.
,
Preclik
,
P.
, and
Cadek
,
J.
,
2001
, “
Notch Effects on Creep Behaviour of CMSX-4 Superalloy Single Crystals
,”
Mater. Sci. Eng. A
,
298
(
1–2
), pp.
84
89
.
7.
Liu
,
D. S.
,
Wen
,
Z. X.
, and
Yue
,
Z. F.
,
2014
, “
Creep Damage Mechanism and Gamma'-Phase Morphology of a V-Notched Round Bar in Ni-Based Single Crystal Superalloys
,”
Mater. Sci. Eng. A.
,
605
, pp.
215
221
.
8.
Hyde
,
T. H.
,
Becker
,
A. A.
,
Song
,
Y.
, and
Sun
,
W.
,
2006
, “
Failure Estimation of TIG Butt-Welded Inco718 Sheets at 620 Degrees C Under Creep and Plasticity Conditions
,”
Comput. Mater. Sci.
,
35
(
1
), pp.
35
41
.
9.
Hyde
,
T. H.
,
Xia
,
L.
, and
Becker
,
A. A.
,
1996
, “
Prediction of Creep Failure in Aeroengine Materials Under Multi-Axial Stress States
,”
Int. J. Mech. Sci.
,
38
(
4
), pp.
385
401
.
10.
Konish
,
H. J.
,
1988
, “
Simplified Estimation of Creep-Rupture Strength for Notched Tensile Specimens of Austenitic Stainless Steels
,”
ASME J. Pressure Vessel Technol.
,
110
(
3
), pp.
314
321
.
11.
Ganesan
,
V.
,
Kumar
,
J. G.
,
Laha
,
K.
, and
Mathew
,
M. D.
,
2013
, “
Notch Creep Rupture Strength of 316 LN SS and Its Variation With Nitrogen Content
,”
Nucl. Eng. Des.
,
254
, pp.
179
184
.
12.
Ha
,
J. C.
,
Tabuchi
,
M.
,
Hongo
,
H.
,
Yokobori
,
A. T.
, and
Fuji
,
A.
,
2004
, “
Creep Crack Growth Properties for 12CrWCoB Rotor Steel Using Circular Notched Specimens
,”
Int. J. Pressure Vessels Piping.
,
81
(
5
), pp.
401
407
.
13.
Curbishley
,
I.
,
Pilkington
,
R.
, and
Lloyd
,
G. J.
,
1986
, “
Macroscopic Creep Crack Growth in Type 316 Stainless Steel—II
,”
Eff. Geom. Constraint. Eng. Fract. Mech.
,
23
(
2
), pp.
383
400
.
14.
Tabuchi
,
M.
,
Adachi
,
T.
,
Yokobori
,
A. T.
,
Fuji
,
A.
,
Ha
,
J.
, and
Yokobori
,
T.
,
2003
, “
Evaluation of Creep Crack Growth Properties Using Circular Notched Specimens
,”
Int. J. Pressure Vessels Piping.
,
80
(
7–8
), pp.
417
425
.
15.
Goyal
,
S.
, and
Laha
,
K.
,
2014
, “
Creep Life Prediction of 9Cr–1Mo Steel Under Multiaxial State of Stress
,”
Mater. Sci. Eng.: A.
,
615
, pp.
348
360
.
16.
Kumar
,
J. G.
,
Ganesan
,
V.
,
Vijayanand
,
V. D.
,
Laha
,
K.
, and
Mathew
,
M. D.
,
2013
, “
Creep Behaviour of 316 L(N) SS in the Presence of Notch
,”
Procedia Eng.
,
55
, pp.
534
541
.
17.
Goyal
,
S.
,
Laha
,
K.
,
Das
,
C. R.
,
Selvi
,
S. P.
, and
Mathew
,
M. D.
,
2013
, “
Finite Element Analysis of Uniaxial and Multiaxial State of Stress on Creep Rupture Behaviour of 2.25Cr-1Mo Steel
,”
Mater. Sci. Eng. A.
,
563
, pp.
68
77
.
18.
Xu
,
X.
,
Wang
,
G. Z.
,
Xuan
,
F. Z.
, and
Tu
,
S. T.
,
2016
, “
Effects of Creep Ductility and Notch Constraint on Creep Fracture Behavior in Notched Bar Specimens
,”
Mater. High Temp.
,
33
(
2
), pp.
1
10
.
19.
Hayhurst
,
D. R.
,
Dimmer
,
P. R.
, and
Morrison
,
C. J.
,
1984
, “
Development of Continuum Damage in the Creep Rupture of Notched Bars
,”
Philos. Trans. R. Soc. London A (Math. Phys. Sci.).
,
311
(
1516
), pp.
103
129
.
20.
Nix
,
W. D.
,
Earthman
,
J. C.
,
Eggeler
,
G.
, and
Ilschner
,
B.
,
1989
, “
The Principal Facet Stress as a Parameter for Predicting Creep Rupture Under Multiaxial Stresses
,”
Acta Metall.
,
37
(
4
), pp.
1067
1077
.
21.
Telesman
,
J.
,
Gabb
,
T. P.
,
Ghosn
,
L. J.
, and
Gayda
,
J.
,
2016
, “
Effect of Notches on Creep-Fatigue Behavior of a P/M Nickel-Based Superalloy
,”
Int. J. Fatigue.
,
87
, pp.
311
325
.
22.
Johnson
,
A. E.
,
Henderson
,
J.
, and
Mathur
,
V. D.
,
1956
, “
Combined Stress Creep Fracture of a Commercial Copper at 250 C
,”
Engineer
,
202
(
5248
), pp.
261
265
.
23.
Hayhurst
,
D. R.
,
1972
, “
Creep Rupture Under Multi-Axial States of Stress
,”
J. Mech. Phys. Solids.
,
20
(
6
), pp.
381
390
.
24.
Hayhurst
,
D. R.
, and
Leckie
,
F. A.
,
1984
, “
Behaviour of Materials at High Temperatures
,”
Fourth International Conference on Mechanical Behaviour of Materials—IV
, Stockholm, Sweden, Aug. 15–19, pp.
1195
1211
.
25.
Sdobyrev
,
V. P.
,
1958
, “
Long-Term Strength of Alloy EI-437B Under Complex Stresses
,”
Izv. Akad. Nauk SSSR, Otd. Tech. Nauk
,
4
, pp.
92
97
.
26.
Cane
,
B. J.
,
1979
, “
Interrelationship Between Creep Deformation and Creep Rupture in 2¼Cr-1Mo Steel
,”
Met. Sci.
,
13
(
5
), pp.
287
294
.
27.
Cane
,
B. J.
,
1981
, “
Creep Damage Accumulation and Fracture Under Multiaxial Stresses
,” International Conference on Fracture (
ICF5)
, Cannes, France, Pergamon Press, Oxford, UK, pp.
1285
1293
.
28.
Stanzl
,
S. E.
,
Argon
,
A. S.
, and
Tschegg
,
E. K.
,
1983
, “
Diffusive Intergranular Cavity Growth in Creep in Tension and Torsion
,”
Acta Metall.
,
31
(
6
), pp.
833
843
.
29.
Dyson
,
B. F.
, and
McLean
,
D.
,
1977
, “
Creep of Nimonic 80A in Torsion and Tension
,”
Met. Sci.
,
11
(
2
), pp.
37
45
.
30.
Zhang
,
D. X.
,
Wang
,
J. P.
,
Wen
,
Z. X.
,
Liu
,
D. S.
, and
Yue
,
Z. F.
,
2016
, “
V-Notched Bar Creep Life Prediction: GH3536 Ni-Based Superalloy Under Multiaxial Stress State
,”
J. Mater. Eng. Perform.
,
25
(
7
), pp.
2959
2968
.
31.
Dyson
,
B. F.
, and
Loveday
,
M. S.
,
1981
, “
Creep Fracture in Nimonic 80A Under Triaxial Tensile Stressing
,”
Creep in Structures
, Springer, Berlin, pp.
406
421
.
32.
Shi
,
D. Q.
,
Hu
,
X. A.
,
Wang
,
J. K.
,
Yu
,
H. C.
,
Yang
,
X. G.
, and
Huang
,
J.
,
2013
, “
Effect of Notch on Fatigue Behaviour of a Directionally Solidified Superalloy at High Temperature
,”
Fatigue Fract. Eng. Mater. Struct.
,
36
(
12
), pp.
1288
1297
.
33.
Chen
,
Q.
,
Kawagoishi
,
N.
, and
Nisitani
,
H.
,
1999
, “
Evaluation of Notched Fatigue Strength at Elevated Temperature by Linear Notch Mechanics
,”
Int. J. Fatigue.
,
21
(
9
), pp.
925
931
.
34.
Yuan
,
S. H.
,
Wang
,
Y. R.
, and
Wei
,
D. S.
,
2014
, “
Experimental Investigation on Low Cycle Fatigue and Fracture Behaviour of a Notched Ni-Based Superalloy at Elevated Temperature
,”
Fatigue Fract. Eng. Mater. Struct.
,
37
(
9
), pp.
1002
1012
.
35.
Berto
,
F.
,
Gallo
,
P.
, and
Lazzarin
,
P.
,
2014
, “
High Temperature Fatigue Tests of un-Notched and Notched Specimens Made of 40CrMoV13.9 Steel
,”
Mater. Des.
,
63
, pp.
609
619
.
36.
Filippini
,
M.
,
2011
, “
Notched Fatigue Strength of Single Crystals at High Temperature
,”
11th International Conference on the Mechanical Behavior of Materials (ICM11)
, Procedia Eng.,
10
, pp.
3787
3792
.
37.
Yu
,
Z. L.
,
Zhao
,
Y. Q.
,
Zhou
,
L.
, and
Sun
,
J.
,
2007
, “
Fractography Analysis of Smooth and Notched High Hycle Fatigue Specimens in TC21 Alloy at 315 °C
,”
Rare Met. Mater. Eng.
,
36
(
12
), pp.
2084
2088
(in Chinese).
38.
Gallo
,
P.
, and
Berto
,
F.
,
2015
, “
Influence of Surface Roughness on High Temperature Fatigue Strength and Cracks Initiation in 40CrMoV13.9 Notched Components
,”
Theor. Appl. Fract. Mech.
,
80
, pp.
226
234
.
39.
Defresne
,
A.
, and
Remy
,
L.
,
1990
, “
Fatigue Behaviour of CMSX 2 Superalloy 001 Single Crystals at High Temperature—I: Low Cycle Fatigue of Notched Specimens
,”
Mater. Sci. Eng. A (Struct. Mater.: Prop., Microstruct. Process.)
,
A129
(
1
), pp.
45
53
.
40.
Gallo
,
P.
,
Berto
,
F.
, and
Lazzarin
,
P.
,
2015
, “
High Temperature Fatigue Tests of Notched Specimens Made of Titanium Grade 2
,”
Theor. Appl. Fract. Mech.
,
76
, pp.
27
34
.
41.
Louks
,
R.
, and
Susmel
,
L.
,
2015
, “
The Linear-Elastic Theory of Critical Distances to Estimate High-Cycle Fatigue Strength of Notched Metallic Materials at Elevated Temperatures
,”
Fatigue Fract. Eng. Mater. Struct.
,
38
(
6
), pp.
629
640
.
42.
Huang
,
J.
,
Yang
,
X.
,
Shi
,
D.
,
Yu
,
H.
, and
Hu
,
X.
,
2014
, “
A Simple Unified Critical Plane Damage Parameter for High-Temperature LCF Life Prediction of a Ni-Based DS Superalloy
,”
J. Mater. Sci.
,
49
(
22
), pp.
7625
7638
.
43.
Huang
,
J.
,
Yang
,
X.
,
Shi
,
D.
,
Yu
,
H.
,
Dong
,
C.
, and
Hu
,
X.
,
2014
, “
Systematic Methodology for High Temperature LCF Life Prediction of Smooth and Notched Ni-Based Superalloy With and Without Dwells
,”
Comput. Mater. Sci.
,
89
, pp.
65
74
.
44.
Moore
,
Z. J.
,
2008
,
Life Modeling of Notched CM247 LC DS Nickel-Based Superalloy
,
Georgia Institute of Technology
,
Atalanta, GA
.
45.
Merah
,
N.
,
2000
, “
Notch-Strengthening Phenomenon Under Creep-Fatigue Loading Conditions
,”
ASME J. Pressure Vessel Technol.
,
122
(
1
), pp.
15
21
.
46.
Bubphachot
,
B.
,
Watanabe
,
O.
,
Kawasaki
,
N.
, and
Kasahara
,
N.
,
2011
, “
Crack Initiation Process for Semicircular Notched Plate in Fatigue Test at Elevated Temperature
,”
ASME J. Pressure Vessel Technol.
,
133
(
3
), p.
031403
.
47.
Watanabe
,
O.
,
Bubphachot
,
B.
, and
Kawasaki
,
N.
,
2007
, “
Fatigue Strength Evaluation of Perforated Plate at Elevated Temperature Using Stress Redistribution Locus Method
,”
ASME Paper No.
CREEP2007-26698.
48.
Moore
,
Z. J.
, and
Neu
,
R. W.
,
2011
, “
Creep Fatigue of a Directionally Solidified Ni-Base Superalloy—Smooth and Cylindrically Notched Specimens
,”
Fatigue Fract. Eng. Mater. Struct.
,
34
(
1
), pp.
17
31
.
49.
Kupkovits
,
R. A.
, and
Neu
,
R. W.
,
2010
, “
Thermomechanical Fatigue of a Directionally-Solidified Ni-Base Superalloy: Smooth and Cylindrically-Notched Specimens
,”
Int. J. Fatigue.
,
32
(
8
), pp.
1330
1342
.
50.
Fernandez-Zelaia
,
P.
, and
Neu
,
R. W.
,
2014
, “
Influence of Notch Severity on Thermomechanical Fatigue Life of a Directionally Solidified Ni-Base Superalloy
,”
Fatigue Fract. Eng. Mater. Struct.
,
37
(
8
), pp.
854
865
.
51.
Sakane
,
M.
,
Ohnami
,
M.
,
Awaya
,
T.
, and
Shirafuji
,
N.
,
1989
, “
Frequency and Hold-Time Effects on Low Cycle Fatigue Life of Notched Specimens at Elevated Temperature
,”
ASME J. Eng. Mater. Technol.
,
111
(
1
), pp.
54
60
.
52.
Filippini
,
M.
,
Saxena
,
A.
,
Dogan
,
B.
, and
Dean
,
S. W.
,
2011
, “
Creep-Fatigue at High Temperature of Notched Single Crystal Superalloys
,”
J. ASTM Int.
,
8
(
6
), p.
103735
.
53.
Umeda
,
H.
,
Hamada
,
N.
,
Motoie
,
K.
,
Sakane
,
M.
, and
Ohnami
,
M.
,
1990
, “
Multiaxial Creep-Fatigue of Round Notched Specimens
,”
J. Soc. Mater. Sci., Jpn.
,
39
(
447
), pp.
1699
1705
.
54.
Sakurai
,
S.
,
Fukuda
,
Y.
, and
Kaneko
,
R.
,
1992
, “
Creep-Fatigue Failure Life and Internal Damage Distribution for Circumferentially Notched 1CrMoV Steel Bars
,”
J. Soc. Mater. Sci., Jpn.
,
41
(
471
), pp.
1743
1748
.
55.
Sakane
,
M.
, and
Ohnami
,
M.
,
1983
, “
A Study on the Notch Effect on the Low Cycle Fatigue of Metals in Creep-Fatigue Interacting Conditions at Elevated Temperature
,”
ASME J. Eng. Mater. Technol.
,
105
(
2
), pp.
75
80
.
56.
Nozaki
,
M.
,
Zhang
,
S.
,
Sakane
,
M.
, and
Kobayashi
,
K.
,
2011
, “
Notch Effect on Creep-Fatigue Life for Sn-3.5Ag Solder
,”
Eng. Fract. Mech.
,
78
(
8
), pp.
1794
1807
.
57.
Ando
,
M.
,
Hirose
,
Y.
,
Karato
,
T.
,
Watanabe
,
S.
,
Inoue
,
O.
,
Kawasaki
,
N.
, and
Enuma
,
Y.
,
2014
, “
Comparison and Assessment of the Creep-Fatigue Evaluation Methods With Notched Specimen Made of Mod.9Cr-1Mo Steel
,”
ASME J. Pressure Vessel Technol.
,
136
(
4
), p.
041406
.
58.
Ando
,
M.
,
Hirose
,
Y.
,
Karato
,
T.
,
Watanabe
,
S.
,
Inoue
,
O.
,
Kawasaki
,
N.
, and
Enuma
,
Y.
,
2012
, “
Comparison of Creep-Fatigue Evaluation Methods With Notched Specimens Made of Mod. 9Cr-1Mo Steel
,”
ASME
Paper No. PVP2011-57532.
59.
Ando
,
M.
,
Hirose
,
Y.
,
Date
,
S.
,
Watanabe
,
S.
,
Enuma
,
Y.
, and
Kawasaki
,
N.
,
2012
, “
Verification of the Estimation Methods of Strain Range in Notched Specimens Made of Mod. 9Cr-1Mo Steel
,”
ASME J. Pressure Vessel Technol.
,
134
(
6
), p.
061403
.
60.
Ponter
,
A. R. S.
,
Chen
,
H.
,
Willis
,
M. R.
, and
Evans
,
W. J.
,
2004
, “
Fatigue-Creep and Plastic Collapse of Notched Bars
,”
Fatigue Fract. Eng. Mater. Struct.
,
27
(
4
), pp.
305
318
.
61.
Watanabe
,
O.
,
Kikuchi
,
M.
, and
Matsuda
,
A.
,
2012
, “
Scanning Electron Microscope of Fatigue and Creep-Fatigue From Stress Concentrations in Plates
,”
ASME
Paper No. PVP2012-78125.
62.
Watanabe
,
O.
, and
Koike
,
T.
,
2006
, “
Creep-Fatigue Life Evaluation Method for Perforated Mates at Elevated Temperature
,”
ASME J. Pressure Vessel Technol.
,
128
(
1
), pp.
17
24
.
63.
Inoue
,
T.
,
Sakane
,
M.
,
Fukuda
,
Y.
,
Igari
,
T.
,
Miyahara
,
M.
, and
Okazaki
,
M.
,
1994
, “
Fatigue-Creep Life Prediction for a Notched Specimen of 21/4Cr-1Mo Steel at 600 degC
,”
Nucl. Eng. Des.
,
150
(
1
), pp.
141
149
.
64.
Gong
,
J. G.
,
2016
, “
Report on Notch Effect and Design Criteria for Components at Elevated Temperatures Under Creep-Fatigue Loading Conditions. East China University of Science and Technology
,” Shanghai, China.
65.
Webster
,
G. A.
,
Holdsworth
,
S. R.
,
Loveday
,
M. S.
,
Nikbin
,
K.
,
Perrin
,
I. J.
,
Purper
,
H.
,
Skelton
,
R. P.
, and
Spindler
,
M. W.
,
2004
, “
A Code of Practice for Conducting Notched Bar Creep Tests and for Interpreting the Data
,”
Fatigue Fract. Eng. Mater. Struct.
,
27
(
4
), pp.
319
342
.
66.
Huddleston
,
R. L.
,
1985
, “
An Improved Multiaxial Creep-Rupture Strength Criterion
,”
ASME J. Pressure Vessel Technol.
,
107
(
4
), pp.
421
429
.
67.
Kraus
,
H.
,
1980
,
Creep Analysis
,
Wiley
,
New York
.
68.
Al-Faddagh
,
K. D.
,
Fenner
,
R. T.
, and
Webster
,
G. A.
,
1982
, “
Steady-State Stress Distributions in Circumferentially Notched Bars Subjected to Creep
,”
J. Strain Anal. Eng. Des.
,
17
(
3
), pp.
123
132
.
69.
Othman
,
A. M.
,
Hayhurst
,
D. R.
, and
Dyson
,
B. F.
,
1993
, “
Skeletal Point Stresses in Circumferentially Notched Tension Bars Undergoing Tertiary Creep Modelled With Physically Based Constitutive Equations
,”
Proc. R. Soc. London, Ser. A (Math. Phys. Sci.).
,
441
(
1912
), pp.
343
358
.
70.
Webster
,
G. A.
,
Cane
,
B. J.
,
Dyson
,
B. F.
, and
Loveday
,
M. S.
,
1991
, “
A Code of Practice for Notch Bar Creep Rupture Testing: Procedures and Interpretation of Data for Design
,” Harmonisation of Testing Practice for High Temperature Materials. Springer, Dordrecht, The Netherlands, pp.
295
330
.
71.
Yao
,
H. T.
,
Xuan
,
F. Z.
,
Wang
,
Z. D.
, and
Tu
,
S. T.
,
2007
, “
A Review of Creep Analysis and Design Under Multi-Axial Stress States
,”
Nucl. Eng. Des.
,
237
(
18
), pp.
1969
1986
.
72.
Kachanov
,
L.
,
1958
, “
Rupture Time Under Creep Conditions
,”
Isv. Akad. Nauk. SSR. Otd Tekh. Nauk.
,
8
, pp.
26
31
.
73.
Rabotnov
,
Y. N.
,
1969
,
Creep Problems in Structural Members
,
North-Holland Pub. Co
,
Amsterdam, The Netherlands
.
74.
Lemaitre
,
J.
,
1984
, “
How to Use Damage Mechanics Nuclear Reactors
,”
Nucl. Eng. Des.
,
80
(
2
), pp.
233
245
.
75.
Yan
,
L.
, and
Murakami
,
S.
,
1998
, “
Damage Localization of Conventional Creep Damage Models and Proposition of a New Model for Creep Damage Analysis
,”
JSME Int. J., Ser. A (Solid Mech. Mater. Eng.).
,
41
(
1
), pp.
57
65
.
76.
Jiang
,
Y. P.
,
Guo
,
W. L.
, and
Yue
,
Z. F.
,
2007
, “
On the Study of the Creep Damage Development in Circumferential Notch Specimens
,”
Comput. Mater. Sci.
,
38
(
4
), pp.
653
659
.
77.
Jiang
,
Y. P.
,
Guo
,
W. L.
,
Yue
,
Z. F.
, and
Wang
,
J.
,
2006
, “
On the Study of the Effects of Notch Shape on Creep Damage Development Under Constant Loading
,”
Mater. Sci. Eng. A.
,
437
(
2
), pp.
340
347
.
78.
Yatomi
,
M.
,
Bettinson
,
A. D.
,
O'Dowd
,
N. P.
, and
Nikbin
,
K. M.
,
2004
, “
Modelling of Damage Development and Failure in Notched-Bar Multiaxial Creep Tests
,”
Fatigue Fract. Eng. Mater. Struct.
,
27
(
4
), pp.
283
295
.
79.
Yatomi
,
M.
,
Nikbin
,
K. M.
, and
O'Dowd
,
N. P.
,
2003
, “
Creep Crack Growth Prediction Using a Damage Based Approach
,”
Int. J. Pressure Vessels Piping.
,
80
(
7–8
), pp.
573
583
.
80.
Bridgman
,
P. W.
,
1952
,
Studies in Large Plastic Flow and Fracture
,
McGraw-Hill
,
New York
.
81.
Yao
,
W. X.
, “
Stress Field Intensity Approach for Predicting Fatigue Life
,”
Int. J. Fatigue
,
15
(
3
), pp.
243
246
.
82.
Taylor
,
D.
,
2001
, “
A Mechanistic Approach to Critical-Distance Methods in Notch Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
,
24
(
4
), pp.
215
224
.
83.
Taylor
,
D.
,
1999
, “
Geometrical Effects in Fatigue: A Unifying Theoretical Model
,”
Int. J. Fatigue.
,
21
(
5
), pp.
413
420
.
84.
Carpinteri
,
A.
,
Macha
,
E.
,
Brighenti
,
R.
, and
Spagnoli
,
A.
,
1999
, “
Expected Principal Stress Directions Under Multiaxial Random Loading—Part I: Theoretical Aspects of the Weight Function Method
,”
Int. J. Fatigue.
,
21
(
1
), pp.
83
88
.
85.
Taylor
,
D.
, and
Wang
,
G.
,
2001
, “
The Critical Volume Method in Fatigue Analysis
,”
Notch Effects in Fatigue and Fracture
, Vol.
11
,
G.
Pluvinage
, and
M.
Gjonaj
, eds., Springer, Dordrecht, The Netherlands, pp.
187
205
.
86.
Macha
,
E.
, and
Sonsino
,
C. M.
,
1999
, “
Energy Criteria of Multiaxial Fatigue Failure
,”
Fatigue Fract. Eng. Mater. Struct.
,
22
(
12
), pp.
1053
1070
.
87.
Domas
,
P. A.
, and
Antolovich
,
S. D.
,
1985
, “
An Integrated Local Energy Density Approach to Notch Low Cycle Fatigue Life Prediction
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
187
202
.
88.
Leidermark
,
D.
,
Moverare
,
J.
,
Simonsson
,
K.
, and
Sjostrom
,
S.
,
2011
, “
A Combined Critical Plane and Critical Distance Approach for Predicting Fatigue Crack Initiation in Notched Single-Crystal Superalloy Components
,”
Int. J. Fatigue.
,
33
(
10
), pp.
1351
1359
.
89.
Karolczuk
,
A.
, and
Macha
,
E.
,
2005
, “
A Review of Critical Plane Orientations in Multiaxial Fatigue Failure Criteria of Metallic Materials
,”
Int. J. Fract.
,
134
(
3–4
), pp.
267
304
.
90.
ASME,
2015
, “ASME Boiler & Pressure Vessel Code, III-NH, Class 1 Components in Elevated Temperature Service,”
American Society of Mechanical Engineers
, ASME, New York, Report No. ASME III-NH.—90.
91.
Dean
,
D. W.
,
2012
, “
R5-Assessment Procedure High Temperature Response Structures
,” EDF Energy Nuclear Generation Ltd, England.
You do not currently have access to this content.