High strength low alloy steels are extensively used in different applications like oil and gas transmission line pipes, pressure vessels and offshore oil drilling platforms. Submerged arc welding (SAW) is mainly used to weld high thickness steel plates. Flux composition and welding parameters play an important role in determining the adequate quality and mechanical properties of the weld. Agglomerated fluxes were formulated based on TiO2–SiO2–MgO and SiO2–MgO–Al2O3 flux system using constrained mixture design and extreme vertices design approach. The chemical compositions of the bead on a plate have been studied using formulated fluxes. Twenty-one beads on plates were applied using submerged arc welding process keeping the parameters: current, voltage, and welding speed constant. Regression models were developed for bead on plate content in terms of individual, binary, and ternary mixture flux constituents for submerged arc multipass bead on plate deposition for pipeline steel (API 5 L X70). In the present study, chemical composition, grain size, and microhardness properties of the multipass bead on a plate (for API 5 L X70 grade pipeline) were optimized using multi-objective optimization approach.

References

References
1.
Houldcroft
,
P. T.
,
1989
,
Submerged-Arc Welding
,
Woodhead Publishing Limited
,
Cambridge, UK
.
2.
Murugan
,
N.
, and
Gunaraj
,
V.
,
2005
, “
Prediction and Control of Weld Bead Geometry and Shape Relationships in Submerged Arc Welding of Pipes
,”
J. Mater. Process. Technol.
,
168
(
3
), pp.
478
487
.
3.
Parmar
,
R. S.
,
1992
,
Welding Processes and Technology
,
Khanna Publishers
,
New Delhi, India
.
4.
Kanjilal
,
P.
,
Pal
,
T. K.
, and
Majumdar
,
S. K.
,
2006
, “
Combined Effect of Flux and Welding Parameters on Chemical Composition and Mechanical Properties of Submerged Arc Weld Metal
,”
J. Mater. Process. Technol.
,
171
(
2
), pp.
223
231
.
5.
O'Brien
,
R. L.
,
1991
,
AWS Welding Handbook: Welding Processes
,
American Welding Society
,
Miami, FL
.
6.
Chai
,
C. S.
, and
Eagar
,
T. W.
,
1980
, “
Effect of SAW Parameters on Weld Metal Chemistry
,”
Weld. Res. Suppl.
, pp.
93-s
98-s
.http://files.aws.org/wj/supplement/WJ_1980_03_s93.pdf
7.
Mitra
,
U.
, and
Eagar
,
T. W.
,
1984
, “
Slag Metal Reactions During Submerged Arc Welding of Alloy Steels
,”
Metall. Trans. A
,
15
(
1
), pp.
217
227
.
8.
Pandey
,
N. D.
,
Bharti
,
A.
, and
Gupta
,
S. R.
,
1994
, “
Effect of Submerged Arc Welding Parameters and Fluxes on Element Transfer Behaviour and Weld-Metal Chemistry
,”
J. Mater. Process. Technol.
,
40
(
1–2
), pp.
195
211
.
9.
Kanjilal
,
P.
,
Pal
,
T. K.
, and
Majumdar
,
S. K.
,
2007
, “
Prediction of Element Transfer in Submerged Arc Welding
,”
Weld. J.
,
86
(
5
), pp.
135-s
146-s
.http://files.aws.org/wj/supplement/wj0507-135.pdf
10.
Burck
,
P. A.
,
Indacochea
,
J. E.
, and
Olson
,
D. L.
,
1990
, “
Effects of Welding Flux Additions on 4340 Steel Weld Metal Composition
,”
Weld. Res. Suppl.
,
3
, pp.
115-s
122-s
.https://app.aws.org/wj/supplement/WJ_1990_03_s115.pdf
11.
Ramirez
,
J. E.
,
2008
, “
Characterization of High-Strength Steel Weld Metals: Chemical Composition, Microstructure and Non-Metallic Inclusions
,”
Weld. J.
,
87
, pp.
65-s
75-s
.https://app.aws.org/wj/supplement/WJ_2008_03_s65.pdf
12.
Anderson
,
V. L.
, and
McLean
,
R. A.
,
1974
,
Design of Experiments: A Realistic Approach
,
Marcel Dekker
,
New York
.
13.
Cornell
,
J. A.
,
2011
,
Experiments With Mixtures: Designs, Models, and the Analysis of Mixture Data
,
Wiley
,
New York
.
14.
Adeyeye
,
A. D.
, and
Oyawale
,
F. A.
,
2008
, “
Mixture Experiments and Their Applications in Welding Flux Design
,”
J. Braz. Soc. Mech. Sci.
,
30
(
4
), pp.
319
326
.
15.
Jindal
,
S.
,
Chhibber
,
R.
, and
Mehta
,
N. P.
,
2013
, “
Investigation on Flux Design for Submerged Arc Welding of High-Strength Low-Alloy Steel
,”
Proc. Inst. Mech. Eng., Part B
,
227
(
3
), pp.
383
395
.
16.
Bhandari
,
D.
,
Chhibber
,
R.
,
Arora
,
N.
, and
Mehta
,
R.
,
2016
, “
Investigation of TiO2–SiO2–CaO–CaF2 Based Electrode Coatings on Weld Metal Chemistry and Mechanical Behaviour of Bimetallic Welds
,”
J. Manuf. Processes
,
23
, pp.
61
74
.
17.
Katsuya
,
K.
,
Satoshi
,
D.
, and
Hideki
,
K.
,
2003
, “Inorganic Fiber and Method of Producing the Same,” U.S. Patent No. 6627568 B2.
18.
Levin
,
E. M.
,
Robbins
,
C. R.
, and
McMurdie
,
H. F.
, 1964, “
Phase Diagrams for Ceramists
,” American Ceramic Society, Columbus, OH, accessed Apr. 11, 2019, https://serc.carleton.edu/research_education/equilibria/ternary_diagrams.html
19.
Sharma
,
L.
, and
Chhibber
,
R.
, 2019, “
Investigating the Physicochemical and Thermophysical Properties of Submerged Arc Welding Fluxes Designed Using TiO2-SiO2-MgO and SiO2-MgO-Al2O3 Flux Systems for Linepipe Steels
,”
Ceram. Int.
,
45
, pp. 1569–1587.
20.
Bhandari
,
D.
,
Chhibber
,
R.
, and
Arora
,
N.
,
2012
, “
Effect of Electrode Coatings on Diffusible Hydrogen Content, Hardness and Microstructures of the Ferritic Heat Affected Zones in Bimetallic Welds
,”
Adv. Mater. Res.
,
383
, pp.
4697
4701
.
21.
Houldcroft
,
P. T.
,
1977
,
Welding Process Technology
,
Cambridge University Press
,
New York
.
22.
Golovko
,
V. V.
, and
Potapov
,
N. N.
,
2011
, “
Special Features of Agglomerated (Ceramic) Fluxes in Welding
,”
Weld. Int.
,
25
(
11
), pp.
889
893
.
23.
Fleck
,
N. G.
,
Grong
,
O.
,
Edwards
,
G. R.
, and
Matlock
,
D. K.
,
1986
, “
The Role of Filler Metal Wire and Flux Composition in Submerged Arc Weld Metal Transformation Kinetics
,”
Weld. J.
,
65
(5), p.
113 s
.
24.
Chai
,
C. S.
, and
Eagar
,
T. W.
, 1981, “
Slag-Metal Equilibrium During Submerged Arc Welding
,”
Metall. Trans. B
,
12
(3), pp. 539–547.
25.
North
,
T. H.
,
Bell
,
H. B.
,
Nowicki
,
A.
, and
Craig
,
I.
,
1978
, “
Slag/Metal Interaction, Oxygen and Toughness in Submerged Arc Welding
,”
Weld. J.
,
57
(229), p.
63 s
.
26.
Parmar
,
R. S.
,
2015
,
Welding Engineering and Technology
, Khanna Publishers, New Delhi, India.
27.
Bang
,
K.-S.
,
Park
,
C.
,
Jung
,
H.-C.
, and
Lee
,
J. B.
, 2009, “
Effects of Flux Composition on the Element Transfer and Mechanical Properties of Weld Metal in Submerged Arc Welding
,”
Met. Mater. Int.
,
15
(3), pp. 471–477.
28.
Maalekian
,
M.
,
2007
, “The Effects of Alloying Elements on Steels (I), Christian Doppler Laboratory for Early Stages of Precipitation,” Technische Universität Graz, Graz, Austria.
29.
Mori
,
N.
,
Homma
,
H.
,
Wakabayashi
,
M.
, and
Okita
,
S.
,
1982
, “
Characteristics of Mechanical Properties of Ti-B Bearing Weld Metals
,” HW DOC IX-1229-82.
30.
TsuboiTerashima
,
H.
,
1983
, “
Review of Strength and Toughness of Ti and Ti-B Microalloyed Deposits
,”
Weld. World
,
21
(
11/12
), pp.
304
316
.http://files.aws.org/wj/supplement/WJ_1982_12_s373.pdf
31.
Kohno
,
R.
,
Takami
,
T.
,
Mori
,
N.
, and
Nagano
,
K.
,
1982
, “
New Fluxes of Improved Weld Metal Toughness for HSLA Steels
,”
Weld. J.
,
61
(
12
), pp.
373-s
380-s
.
32.
Lancaster
,
J. F.
,
1980
,
Metallurgy of Welding
,
Alden Press Ltd
,
London
, pp.
25
50
; 6th, ed., Woodhead Publication, pp. 110–177; 1999, HRT, Hertfordshire, UK.
33.
Derringer
,
G.
, and
Suich
,
R.
,
1980
, “
Simultaneous Optimization of Several Response Variables
,”
J. Qual. Technol.
,
12
(
4
), pp.
214
219
.
34.
Harington
,
J.
,
1965
, “
The Desirability Function
,”
Ind. Qual. Control
,
21
, pp.
494
498
.
You do not currently have access to this content.