The bimetal composite pipe has found wide ranging applications in engineering owing to its excellent mechanical and physical performances. However, the interlaminar cracks which are usually invisible and inaccessible may occur in the bimetal composite pipe and are difficult to detect. The ultrasonic interface wave, which propagates along the interface with high displacement amplitudes and low dispersion at high frequencies, provides a promising nondestructive testing (NDT) method for detecting cracks in the bimetal composite pipe. In this study, the interlaminar crack detection method in the steel–titanium composite pipe is investigated analytically and experimentally by using interface wave. The interface wave mode in steel–titanium composite pipe is first identified and presented by theoretical analyses of dispersion curves and wave structures. The selection of suitable excitation frequency range for NDT is discussed as well. Then an experiment is conducted to measure the interface wave velocities, which are in good agreement with the corresponding numerical results. In addition, interlaminar cracks with different locations in steel–titanium composite pipe are effectively detected and located, both in the axial and circumferential directions. Finally, the relationship between the reflection coefficient and the crack depth is experimentally studied to predict the reflection behavior of interface wave with crack. The numerical and experimental results show the interface wave is sensitive to interfacial crack and has great potentials for nondestructive evaluation in the bimetal composite pipe.

References

References
1.
Kane
,
R. D.
,
Wilheim
,
S. M.
,
Yoshida
,
T.
,
Matsui
,
S.
, and
Iwase
,
T.
,
1991
, “
Analysis of Bimetallic Pipe for Sour Service
,”
SPE Prod. Eng.
,
6
(
3
), pp.
291
296
.
2.
Wang
,
X.
,
Li
,
P.
, and
Wang
,
R.
,
2005
, “
Study on Hydro-Forming Technology of Manufacturing Bimetallic CRA-Lined Pipe
,”
Int. J. Mach. Tools Manuf.
,
45
(
4–5
), pp.
373
378
.
3.
Chen
,
Z.
,
Ikeda
,
K.
,
Murakami
,
T.
,
Takeda
,
T.
, and
Xie
,
J. X.
,
2003
, “
Fabrication of Composite Pipes by Multi-Billet Extrusion Technique
,”
J. Mater. Process Technol.
,
137
(
1–3
), pp.
10
16
.
4.
Brust
,
F. W.
, and
Scott
,
P. M.
,
2007
, “
Weld Residual Stresses and Primary Water Stress Corrosion Cracking in Bimetal Nuclear Pipe Welds
,”
ASME
Paper No. PVP2007-26297.
5.
Valle
,
C.
,
Qu
,
J.
, and
Jacobs
,
L. J.
,
1999
, “
Guided Circumferential Waves in Layered Cylinders
,”
Int. J. Eng. Sci.
,
37
(
11
), pp.
1369
1387
.
6.
Bouda
,
A. B.
,
Lebaili
,
S.
, and
Benchaala
,
A.
,
2003
, “
Grain Size Influence on Ultrasonic Velocities and Attenuation
,”
NDT E Int.
,
36
(
1
), pp.
1
5
.
7.
Murakami
,
Y.
,
Kashimura
,
H.
,
Fukuda
,
S.
, and
Hoshino
,
Y.
, 1992, “
Quality Assurance System for Mechanically Bonded Bimetallic Pipe
,” Second International Off-shore and Polar Engineering Conference, San Francisco, CA, June 14–19, pp. 164–168.
8.
Lowe
,
M. J. S.
,
Alleyne
,
D. N.
, and
Cawley
,
P.
,
1998
, “
Defect Detection in Pipes Using Guided Waves
,”
Ultrasonics
,
36
(
1–5
), pp.
147
154
.
9.
Rose
,
J. L.
,
2002
, “
A Baseline and Vision of Ultrasonic Guided Wave Inspection Potential
,”
ASME J. Pressure Vessel Technol.
,
124
(
3
), pp.
273
282
.
10.
Zhang
,
L.
,
Luo
,
W.
, and
Rose
,
J. L.
, 2006, “
Ultrasonic Guided Wave Focusing Beyond Welds in a Pipeline
,”
Rev. Prog. Quant. Nondestruct. Eval.
,
820
(1), pp. 877–884.
11.
He
,
C.
,
Liu
,
H.
,
Liu
,
Z.
, and
Wu
,
B.
,
2013
, “
The Propagation of Coupled Lamb Waves in Multilayered Arbitrary Anisotropic Composite Laminates
,”
J. Sound Vib.
,
332
(
26
), pp.
7243
7256
.
12.
Kessler
,
S. S.
,
Spearing
,
S. M.
, and
Soutis
,
C.
,
2002
, “
Damage Detection in Composite Materials Using Lamb Wave Methods
,”
Smart Mater. Struct.
,
11
(
2
), pp.
269
278
.
13.
Li
,
F.
,
Su
,
Z.
,
Ye
,
L.
, and
Meng
,
G.
,
2006
, “
A Correlation Filtering-Based Matching Pursuit (CF-MP) for Damage Identification Using Lamb Waves
,”
Smart Mater. Struct.
,
15
(
6
), pp.
1585
1594
.
14.
Su
,
Z.
,
Ye
,
L.
, and
Lu
,
Y.
,
2006
, “
Guided Lamb Waves for Identification of Damage in Composite Structures: A Review
,”
J. Sound Vib.
,
295
(
3–5
), pp.
753
780
.
15.
Stoneley
,
R.
,
1924
, “
Elastic Waves at the Surface of Separation of Two Solids
,”
Proc. R. Soc. London Ser. A
,
106
(
738
), pp.
416
428
.
16.
Scholte
,
J. G.
,
1947
, “
The Range of Existence of Rayleigh and Stoneley Waves
,”
Geophys. J. Int.
,
5
(
5
), pp.
120
126
.
17.
Murty
,
G. S.
,
1975
, “
Wave Propagation at Unbonded Interface Between Two Elastic Half-Spaces
,”
J. Acoust. Soc. Am.
,
58
(
5
), pp.
1094
1095
.
18.
Tomar
,
S. K.
, and
Singh
,
D.
,
2006
, “
Propagation of Stoneley Waves at an Interface Between Two Microstretch Elastic Half-Spaces
,”
J. Vib. Control
,
12
(
9
), pp.
995
1009
.
19.
Vinh
,
P. C.
, and
Giang
,
P. T. H.
,
2011
, “
On Formulas for the Velocity of Stoneley Waves Propagating Along the Loosely Bonded Interface of Two Elastic Half-Spaces
,”
Wave Motion
,
48
(
7
), pp.
647
657
.
20.
Gardner
,
M. D.
,
Rose
,
J. L.
,
Koudela
,
K. L.
, and
Moose
,
C. A.
, 2013, “
Inspectability of Interfaces Between Composite and Metallic Layers Using Ultrasonic Interface Waves
,”
Proc. Meet. Acoust.
,
19
(1), p. 030105.
21.
Li
,
B.
,
Qiang
,
L.
,
Lu
,
T.
,
Geng
,
X.
, and
Li
,
M.
,
2015
, “
A Stoneley Wave Method to Detect Interlaminar Damage of Metal Layer Composite Pipe
,”
Front. Mech. Eng.
,
10
(
1
), pp.
89
94
.
22.
Lee
,
D. A.
, and
Corbly
,
D. M.
,
1977
, “
Use of Interface Waves for Nondestructive Inspection
,”
IEEE Trans. Son. Ultrason.
,
24
(
3
), pp.
206
211
.
23.
Claus
,
R. O.
, and
Palmer
,
C. H.
,
1980
, “
Optical Measurements of Ultrasonic Waves on Interfaces Between Bonded Solids
,”
IEEE Trans. Son. Ultrason.
,
27
(
3
), pp.
97
102
.
24.
Lee
,
J.
,
Park
,
J.
, and
Cho
,
Y.
,
2016
, “
A Novel Ultrasonic NDE for Shrink Fit Welded Structures Using Interface Waves
,”
Ultrasonics
,
68
, pp.
1
7
.
25.
Rokhlin
,
S. I.
,
Hefets
,
M.
, and
Rosen
,
M.
,
1981
, “
An Ultrasonic Interface-Wave Method for Predicting the Strength of Adhesive Bonds
,”
J. Appl. Phys.
,
52
(
4
), pp.
2847
2851
.
26.
Biwa
,
S.
,
Suzuki
,
A.
, and
Ohno
,
N.
,
2005
, “
Evaluation of Interface Wave Velocity, Reflection Coefficients and Interfacial Stiffnesses of Contacting Surfaces
,”
Ultrasonics
,
43
(
6
), pp.
495
502
.
27.
Bostron
,
J. H.
,
Rose
,
J. L.
, and
Moose
,
C. A.
,
2013
, “
Ultrasonic Guided Interface Waves at a Soft-Stiff Boundary
,”
J. Acoust. Soc. Am.
,
134
(
6
), pp.
4351
4359
.
28.
Cho
,
H.
, and
Rokhlin
,
S. I.
,
2015
, “
Interface Wave Propagation and Edge Conversion at a Low Stiffness Interphase Layer Between Two Solids: A Numerical Study
,”
Ultrasonics
,
62
, pp.
213
222
.
29.
Demma
,
A.
,
Cawley
,
P.
,
Lowe
,
M. J. S.
,
Roosenbrand
,
A. G.
, and
Pavlakovic
,
B.
,
2004
, “
The Reflection of Guided Waves From Notches in Pipes: A Guide for Interpreting Corrosion Measurements
,”
NDT E Int.
,
37
(
3
), pp.
167
180
.
30.
Rose
,
J. L.
,
2014
,
Ultrasonic Guided Waves in Solid Media
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.