Cylindrical explosion containment vessels (ECVs) are widely applied in transportation, nuclear engineering, public security, and scientific research fields to ensure the safety of the staff and equipment. In this paper, a cylindrical ECV model under a nonuniformly explosive load was established. The nonuniformly explosive load is simplified as parabolic pressure acting on the internal wall of the ECV. And then, based on the stress function method and boundary conditions, an analytical solution of the ECV subjected to the parabolic load was obtained. Next, the dynamic burst pressure equation of the ECV under the explosive load was obtained. In the end, the accuracy of the dynamic burst pressure equation was evaluated by comparing with the finite element method (FEM) under different pulse duration. The results demonstrated that the equation can accurately predict the dynamic burst pressure of the ECV. In addition, our researches can provide a benchmark for approximate or numerical solutions. It is rewarding to analyze the failure problem and evaluate the safety and integrity of the pipe and vessels under a nonuniformly explosive load.

References

References
1.
Yaguang
,
S.
,
Dezhi
,
Z.
,
Shiying
,
T.
,
Jie
,
L.
, and
Qizhao
,
L.
,
2014
, “
Theoretical Analysis of a Reactive Reinforcement Method for Cylindrical Explosion-Containment Vessels
,”
ASME J. Pressure Vessel Technol.
,
137
(
1
), p.
011206
.
2.
Ma
,
L.
,
Xin
,
J.
,
Hu
,
Y.
, and
Zheng
,
J.
,
2013
, “
Ductile and Brittle Failure Assessment of Containment Vessels Subjected to Internal Blast Loading
,”
Int. J. Impact Eng.
,
52
, pp.
28
36
.
3.
Zheng
,
J. Y.
,
Deng
,
G. D.
,
Chen
,
Y. J.
,
Sun
,
G. Y.
,
Hu
,
Y. L.
,
Zhao
,
L. M.
, and
Li
,
Q. M.
,
2006
, “
Experimental Investigation of Discrete Multilayered Vessels Under Internal Explosion
,”
Combust., Explos., Shock Waves
,
42
(
5
), pp.
617
622
.
4.
Dong
,
Q.
,
Li
,
Q. M.
, and
Zheng
,
J. Y.
,
2010
, “
Further Study on Strain Growth in Spherical Containment Vessels Subjected to Internal Blast Loading
,”
Int. J. Impact Eng.
,
37
(
2
), pp.
196
206
.
5.
Leskovar
,
M.
, and
Uršič
,
M.
,
2009
, “
Estimation of Ex-Vessel Steam Explosion Pressure Loads
,”
Nucl. Eng. Des.
,
239
(
11
), pp.
2444
2458
.
6.
Moriyama
,
K.
,
Takagi
,
S.
,
Muramatsu
,
K.
,
Nakamura
,
H.
, and
Maruyama
,
Y.
,
2006
, “
Evaluation of Containment Failure Probability by Ex-Vessel Steam Explosion in Japanese LWR Plants
,”
J. Nucl. Sci. Technol.
,
43
(
7
), pp.
774
784
.
7.
Dong
,
Q.
,
Hu
,
B. Y.
,
Chen
,
S. Y.
, and
Gu
,
Y.
,
2012
, “
Engineering Design of a Multiple-Use Spherical Explosion Containment Vessel Subjected to Internal Blast Loading From 25 kg TNT High Explosive
,”
ASME J. Pressure Vessel Technol.
,
134
(
2
), p.
021205
.
8.
Baker
,
W. E.
,
Hu
,
W. C. L.
, and
Jackson
,
T. R.
,
1966
, “
Elastic Response of Thin Spherical Shells to Axisymmetric Blast Loading
,”
ASME J. Appl. Mech.
,
33
(
4
), pp.
800
806
.
9.
de Malherbe
,
M. C.
,
Wing
,
R. D.
,
Laderman
,
A. J.
, and
Oppenheim
,
A. K.
,
1966
, “
Response of a Cylindrical Shell to Internal Blast Loading
,”
J. Mech. Eng. Sci.
,
8
(
1
), pp.
91
98
.
10.
Ramu
,
S. A.
, and
Iyengar
,
K. J.
,
1976
, “
Plastic Response of Orthotropic Circular Plates Under Blast Loading
,”
Int. J. Solids Struct.
,
12
(
2
), pp.
125
133
.
11.
Ko
,
W. L.
,
Pennick
,
H. G.
, and
Baker
,
W. E.
,
1977
, “
Elasto-Plastic Response of a Multi-Layered Spherical Vessel to Internal Blast Loading
,”
Int. J. Solids Struct.
,
13
(
6
), pp.
503
514
.
12.
Cost
,
T. L.
, and
Jones
,
H. W.
,
1979
, “
Dynamic Response of Blast Loaded Prestressed Flat Plates
,”
J. Sound Vib.
,
62
(
1
), pp.
111
120
.
13.
Rajamani
,
A.
, and
Prabhakaran
,
R.
,
1980
, “
Response of Composite Plates to Blast Loading
,”
Exp. Mech.
,
20
(
7
), pp.
245
250
.
14.
Karpp
,
R. R.
,
Duffey
,
T. A.
, and
Neal
,
T. R.
,
1983
, “
Response of Containment Vessels to Explosive Blast Loading
,”
ASME J. Pressure Vessel Technol.
,
105
(
1
), p.
23
.
15.
Ruiz
,
C.
,
Salvatorelli-D'Angelo
,
F.
, and
Thompson
,
V. K.
,
1989
, “
Elastic Response of Thin-Wall Cylindrical Vessels to Blast Loading
,”
Comput. Struct.
,
32
(
5
), pp.
1061
1072
.
16.
Zheng
,
J. Y.
,
Chen
,
Y. J.
,
Deng
,
G. D.
,
Sun
,
G. Y.
,
Hu
,
Y. L.
, and
Li
,
Q. M.
,
2006
, “
Dynamic Elastic Response of an Infinite Discrete Multi-Layered Cylindrical Shell Subjected to Uniformly Distributed Pressure Pulse
,”
Int. J. Impact Eng.
,
32
(
11
), pp.
1800
1827
.
17.
Ma
,
L.
,
Hu
,
Y.
,
Zheng
,
J.
,
Deng
,
G.
, and
Chen
,
Y.
,
2010
, “
Failure Analysis for Cylindrical Explosion Containment Vessels
,”
Eng. Failure Anal.
,
17
(
5
), pp.
1221
1229
.
18.
Cheng
,
C.
, and
Widera
,
G. E. O.
,
2009
, “
Dynamic Burst Pressure Simulation of Cylindrical Shells
,”
ASME J. Pressure Vessel Technol.
,
131
(
6
), p.
061205
.
19.
Cheng
,
C.
, and
Widera
,
G. E. O.
,
2010
, “
Dynamic Burst Pressure Simulation of Cylinder-Cylinder Intersections
,”
ASME J. Pressure Vessel Technol.
,
132
(
1
), p.
011201
.
20.
Liu
,
Z.
,
Shan
,
R.
,
Liu
,
W.
, and
Ni
,
L.
,
2004
, “
Solutions of Thick-Walled Tube Under Arbitrary Quadratic Function and the Limit of the Tube With a Infinite Length
,”
Sci. China, Ser. E: Technol. Sci.
,
34
(
3
), pp.
298
304
.
21.
Timoshenko
,
S.
, and
Goodier
,
J. N.
,
1951
,
Theory of Elasticity
,
S.
Timoshenko
and
J. N.
Goodier
, eds.,
McGraw-Hill Book Company
, New York.
22.
Kuntiyawichai
,
K.
, and
Burdekin
,
F. M.
,
2003
, “
Engineering Assessment of Cracked Structures Subjected to Dynamic Loads Using Fracture Mechanics Assessment
,”
Eng. Fract. Mech.
,
70
(
15
), pp.
1991
2014
.
23.
Chen
,
Z.
,
Zhu
,
W.
,
Di
,
Q.
, and
Wang
,
W.
,
2015
, “
Burst Pressure Analysis of Pipes With Geometric Eccentricity and Small Thickness-to-Diameter Ratio
,”
J. Pet. Sci. Eng.
,
127
, pp.
452
458
.
24.
Chen
,
Z.
,
Zhu
,
W.
,
Di
,
Q.
, and
Wang
,
W.
,
2015
, “
Prediction of Burst Pressure of Pipes With Geometric Eccentricity
,”
ASME J. Pressure Vessel Technol.
,
137
(
6
), p.
061201
.
25.
Chen
,
Z.
,
Zhu
,
W.
,
Di
,
Q.
, and
Li
,
S.
,
2016
, “
Numerical and Theoretical Analysis of Burst Pressures for Casings With Eccentric Wear
,”
J. Pet. Sci. Eng.
,
145
, pp.
585
591
.
26.
Chen
,
Z.
,
Yan
,
S.
,
Ye
,
H.
,
Deng
,
Z.
,
Shen
,
X.
, and
Jin
,
Z.
,
2017
, “
Double Circular Arc Model Based on Average Shear Stress Yield Criterion and Its Application in the Corroded Pipe Burst
,”
J. Pet. Sci. Eng.
,
149
, pp.
515
521
.
27.
Chen
,
Z.
,
Yan
,
S.
,
Ye
,
H.
,
Shen
,
X.
, and
Jin
,
Z.
,
2017
, “
Effect of the Y/T on the Burst Pressure for Corroded Pipelines With High Strength
,”
J. Pet. Sci. Eng.
,
157
, pp.
760
766
.
28.
Baker
,
W. E.
,
Kulesz
,
J. J.
,
Westine
,
P. S.
,
Cox
,
P. A.
, and
Wilbeck
,
J. S.
,
1981
, “
A Manual for the Prediction of Blast and Fragment Loadings on Structures
,” Southwest Research Institute, San Antonio, TX.
29.
Hampton
,
E. J.
, and
Bitner
,
J. L.
,
2005
, “
Stress or Strain Criteria for Combined Static and Dynamic Loading
,”
Weld. Res. Counc. Bull.
,
500
, pp.
1
223
.
30.
Jin
,
Z.
,
Shen
,
X.
,
Yan
,
S.
,
Ye
,
H.
,
Gao
,
Z.
, and
Chen
,
Z.
,
2016
, “
A Three-Dimensional Analytical Solution for Sandwich Pipe Systems Under Linearly Varying External Pressures
,”
Ocean Eng.
,
124
, pp.
298
305
.
31.
Chen
,
Z.
,
Zhu
,
W.
, and
Di
,
Q.
,
2018
, “
Elasticity Solution for the Casing Under Linear Crustal Stress
,”
Eng. Failure Anal.
,
84
, pp.
185
195
.
You do not currently have access to this content.