This paper presents a reliability-based methodology for assessing fracture failures of steel pipes with sharp corrosion pits. Based on newly developed models of elastic fracture toughness, the simple criterion of stress intensity factor (SIF) is used to establish the limit state functions for pipes with sharp corrosion pits in the longitudinal and circumferential directions. A stochastic model of load effect is developed and a time-dependent reliability method based on first passage probability for nonstationary lognormal processes is employed to quantify the probability of failure and predict the remaining service life. After applying the methodology to a case study, sensitivity analysis is carried out to identify the most influential variables on the probability of failure. It is found in the paper that the correlation coefficient has a considerable effect on probability of failure of steel pipes with sharp corrosion pits and that the larger the mode I fracture toughness is, the smaller the probability of pipe failure is.

References

References
1.
Moore
,
G.
,
2010
, “
Corrosion Challenges-Urban Water Industry
,” A Report on the Impact of Failure of Infrastructure Assets Through Corrosion as a Result of Current Practices and Skilling in the Australian Mainland Urban Water and Naval Defence Sectors, The Australasian Corrosion Association, Blackburn, Australia.
2.
Australian Pipeline Industry Association,
2014
, “
Pipeline Facts and Figures
,” Australian Pipeline Industry Association, Barton, Australian Capital Territory, Australia, accessed Oct. 1, 2018, https://www.apga.org.au/pipeline-facts-and-figures
3.
Petersen
,
R. B.
, and
Melchers
,
R. E.
,
2012
,
Long-Term Corrosion of Cast Iron Cement Lined Pipes
,
Corrosion and Prevention
,
Melbourne, Australia
.
4.
Ahammed
,
M.
, and
Melchers
,
R. E.
,
1994
, “
Reliability of Underground Pipelines Subject to Corrosion
,”
J. Transp. Eng.
,
120
(
6
), pp.
989
1002
.
5.
Ahammed
,
M.
, and
Melchers
,
R. E.
,
1997
, “
Probabilistic Analysis of Underground Pipelines Subject to Combined Stresses and Corrosion
,”
Eng. Struct.
,
19
(
12
), pp.
988
994
.
6.
Liu
,
P. L.
,
Lin
,
H. Z.
, and
Der Kiureghian
,
A.
,
1989
,
CALREL Software
,
Department of Civil Engineering, the University of California
,
Berkeley, CA
.
7.
De Silva
,
D.
,
Moglia
,
M.
,
Davis
,
P.
, and
Burn
,
S.
,
2006
, “
Condition Assessment to Estimate Failure Rates in Buried Metallic Pipelines
,”
J. Water Supply: Res. Technol. Aqua
,
55
(
3
), pp.
179
191
.
8.
Melchers
,
R. E.
,
2005
, “
The Effect of Corrosion on the Structural Reliability of Steel Offshore Structures
,”
Corros. Sci.
,
47
(
10
), pp.
2391
2410
.
9.
Zhou
,
W. X.
,
2010
, “
System Reliability of Corroding Pipelines
,”
Int. J. Pressure Vessel Piping
,
87
(
10
), pp.
587
595
.
10.
Qian
,
G.
,
Niffenegger
,
M.
, and
Li
,
S. X.
,
2011
, “
Probabilistic Analysis of Pipelines With Corrosion Defects by Using FITNET FFS Procedure
,”
Corros. Sci.
,
53
(
3
), pp.
855
861
.
11.
ASME,
1991
, “Manual for Determining the Remaining Strength of Corroded Pipelines. A Supplement of ASME B31G Code for Pressure Piping,”
ASME
,
New York
, Standard No.
ASME-B31G
.https://law.resource.org/pub/us/cfr/ibr/002/asme.b31g.1991.pdf
12.
ASME,
2012
, “Manual for Determining the Remaining Strength of Corroded Pipelines. A Supplement of ASME B31G Code for Pressure Piping,”
ASME
,
New York
, Standard No.
ASME-B31G
.https://files.asme.org/catalog/codes/printbook/33501.pdf
13.
Klever
,
F. J.
, and
Stewart
,
G.
,
1995
, “
New Developments in Burst Strength Predictions for Locally Corroded Pipes
,”
International Conference on Offshore Mechanics and Arctic Engineering
, Copenhagen, Denmark, June 18–22, pp. 161–173.
14.
Leis
,
N.
, and
Stephens
,
D. R.
,
1997
, “
An Alternative Approach to Assess the Integrity of Corroded Line Pipe—Part I: Current Status and II Alternative Criterion
,”
Seventh International Offshore and Polar Engineering Conference
, Honolulu, HI, May 25–30, pp. 635–641.
15.
Kocak
,
M.
,
2006
, “
FITNET Fitness-for-Service Network Final Technical Report
,” GKSS Research Centre, Version 27, Geesthacht, Germany.
16.
DNV GL
,
2017
, “
Corroded Pipelines
,” Recommended Practice, Det Norske Veritas as, Oslo, Norway, Standard No. DNVGL-RP-F101.
17.
Tee
,
K. F.
,
Khan
,
L. R.
, and
Li
,
H. S.
,
2014
, “
Application of Subset Simulation in Reliability Estimation of Underground Pipelines
,”
Reliab. Eng. Syst. Saf.
,
130
, pp.
125
131
.
18.
Water Services Association of Australia,
2003
, “
Common Failure Modes in Pressurized Pipeline Systems
,” Water Services Association of Australia, Melbourne, Australia, accessed Oct. 8, 2018, https://sswm.info/sites/default/files/reference_attachments/WSAA%202003%20Common%20Failure%20Modes%20in%20Pressurised%20Pipeline%20Systems.pdf
19.
Lee
,
J. M.
,
Han
,
S.
,
Kim
,
K.
,
Kim
,
H.
, and
Lee
,
U.
,
2013
, “
Failure Analysis of Carbon Steel Pipes Used for Underground Condensate Pipeline in the Power Station
,”
Eng. Failure Anal.
,
34
, pp.
300
307
.
20.
Lin
,
Y. C.
,
Xie
,
Y. J.
, and
Wang
,
X. H.
,
2004
, “
Probabilistic Fracture Failure Analysis of Nuclear Piping Containing Defects Using R6 Method
,”
Nucl. Eng. Des.
,
229
(
2–3
), pp.
237
246
.
21.
British Energy
,
2001
, “Assessment of the Integrity of Structures Containing Defects,”
British Energy Generation
,
Gloucester, UK
, Report No. R6.
22.
Yang
,
W.
,
Fu
,
G. Y.
, and
Li
,
C. Q.
,
2017
, “
Elastic Fracture Toughness of Ductile Materials
,”
J. Eng. Mech.
,
143
(
9
), p.
04017111
.
23.
Li
,
C. Q.
,
Firouzi
,
A.
, and
Yang
,
W.
,
2016
, “
Closed-Form Solution to First Passage Probability for Nonstationary Lognormal Processes
,”
J. Eng. Mech.
,
142
(
12
), p.
04016103
.
24.
Li
,
C. Q.
, and
Melchers
,
R. E.
,
1993
, “
Outcrossings From Convex Polyhedrons for Nonstationary Gaussian Processes
,”
J. Eng. Mech.
,
119
(
11
), pp.
2354
2361
.
25.
Melchers
,
R. E.
,
1999
,
Structural Reliability Analysis and Prediction
,
Wiley
,
Brisbane, Australia
.
26.
Rice
,
S. O.
,
1944
, “
Mathematical Analysis of Random Noise
,”
Bell Syst. Tech. J.
,
23
(
3
), pp.
282
332
.
27.
Papoulis
,
A.
, and
Pillai
,
S. U.
,
2002
,
Probability, Random Variables and Stochastic Processes
,
McGraw-Hill
, New York.
28.
Raju
,
I. S.
, and
Newman
,
J. G.
,
1982
, “
Stress-Intensity Factors for Internal and External Surface Cracks in Cylindrical Vessels
,”
ASME J. Pressure Vessel Technol.
,
104
(
4
), pp.
293
298
.
29.
ABAQUS,
2011
, “Version 6.11 Documentation,”
Dassault Systèmes Simulia
,
Providence, RI
.
30.
Pook
,
L. P.
,
1995
, “
On Fatigue Crack Paths
,”
Int. J. Fatigue
,
17
(
1
), pp.
5
13
.
31.
Li
,
C. Q.
,
Fu
,
G. Y.
, and
Yang
,
W.
,
2016
, “
Stress Intensity Factors for Inclined External Surface Cracks in Pressurised Pipes
,”
Eng. Fract. Mech.
,
165
, pp.
72
86
.
32.
MathWorks,
2013
, “MATLAB R2013b,”
MathWorks
,
Natick, MA
.
33.
Li
,
C. Q.
,
Fu
,
G. Y.
,
Yang
,
W.
, and
Yang
,
S. T.
,
2017
, “
Derivation of Elastic Fracture Toughness for Ductile Metal Pipes With Circumferential External Cracks Under Combined Tension and Bending
,”
Eng. Fract. Mech.
,
178
, pp.
39
49
.
34.
Milne
,
I.
,
Ainsworth
,
R. A.
,
Dowling
,
A. R.
, and
Stewart
,
A. T.
,
1988
, “
Assessment of the Integrity of Structures Containing Defects
,”
Int. J. Presure Vessels Piping
,
32
(
1–4
), pp.
3
104
.
35.
Kim
,
Y.-J.
,
Shim
,
D.-J.
,
Nikbin
,
K.
,
Kim
,
Y.-J.
,
Hwang
,
S.-S.
, and
Kim
,
J.-S.
,
2003
, “
Finite Element Based Plastic Limit Loads for Cylinders With Part-Through Surface Cracks Under Combined Loading
,”
Int. J. Pressure Vessels Piping
,
80
(
7–8
), pp.
527
540
.
36.
Kucera
,
V.
, and
Mattsson
,
E.
,
1987
, “
Atmospheric Corrosion
,”
Corrosion Mechanics
,
F.
Mansfeld
, ed.,
Marcel Dekker
,
New York
.
37.
Rajani
,
B.
,
Makar
,
J.
,
McDonald
,
S.
,
Zhan
,
C.
,
Kuraoka
,
S.
,
Jen
,
C. K.
, and
Viens
,
M.
,
2000
,
Investigation of Grey Cast Iron Water Mains to Develop a Methodology for Estimating Service Life
,
American Water Works Association Research Foundation
,
Denver, CO
.
38.
Melchers
,
R. E.
, and
Jeffrey
,
R. J.
,
2008
, “
Probabilistic Models for Steel Corrosion Loss and Pitting of Marine Infrastructure
,”
Reliab. Eng. Syst. Saf.
,
93
, pp.
423
432
.
39.
Rossum
,
J. R.
,
1969
, “
Prediction of Pitting Rates in Ferrous Metals From Soil Parameters
,”
J. Am. Water Works Assoc.
,
61
(
6
), pp.
305
310
.
40.
Sheikh
,
A. K.
,
Boah
,
J. K.
, and
Hansen
,
D. A.
,
1990
, “
Statistical Modelling of Pitting Corrosion and Pipeline Reliability
,”
Corrosion
,
46
(
3
), pp.
190
197
.
41.
Schwerdtfeger
,
W. J.
,
1971
, “
Polarization Measurements as Related to Corrosion of Underground Steel Piling
,”
J. Res. Natl. Bur. Stand. Eng. Instrum.
,
75C
(
2
), pp.
107
121
.
42.
Li
,
C. Q.
,
Lawanwisut
,
W.
, and
Zheng
,
J. J.
,
2005
, “
Time-Dependent Reliability Method to Assess the Serviceability of Corrosion-Affected Concrete Structures
,”
J. Struct. Eng.
,
131
(
11
), pp.
1674
1680
.
43.
Nowak
,
A. S.
, and
Collins
,
K. R.
,
2012
,
Reliability of Structures
,
CRC Press
, Boca Raton, FL.
You do not currently have access to this content.