After distinguishing material ratcheting and structural ratcheting, different phenomena related to structural ratcheting are gathered. Ratcheting of elastic–plastic structures observed with stationary position of loads is distinguished from ratcheting with moving loads. Both categories are illustrated by examples. The effect of evolution laws for the internal variables describing kinematic hardening on the accumulation of strain due to a ratcheting mechanism, and whether the ratcheting mechanism ceases with the number of cycles so that the accumulated strains are limited, is discussed. Some conditions are shown, under which the Chaboche model can lead to shakedown. Scenarios where shakedown is guaranteed at every load level, or where it may or may not occur at a specific load level, or where it definitely cannot occur at any load level, are distinguished. Correspondingly, the usefulness of shakedown analyses, which are searching for maximum load factors assuring shakedown, or direct (or simplified) methods to obtain postshakedown quantities by avoiding incremental cyclic analyses is discussed.

References

References
1.
Mulcahy
,
T. M.
,
1974
, “
An Assessment of Kinematic Hardening Thermal Ratcheting
,”
ASME J. Eng. Mater. Technol.
,
96
(
3
), pp.
214
221
.
2.
Simon
,
J.-W.
, and
Weichert
,
D.
,
2012
, “
Shakedown Analysis of Engineering Structures With Limited Kinematical Hardening
,”
Int. J. Solids Struct.
,
49
(
15–16
), pp.
2177
2186
.
3.
Huang
,
M.
,
Suo
,
Z.
,
Ma
,
Q.
, and
Fujimoto
,
H.
,
2000
, “
Thin Film Cracking and Ratcheting Caused by Temperature Cycling
,”
J. Mater. Res.
,
15
(
6
), pp.
1239
1242
.
4.
Huang
,
M.
,
Suo
,
Z.
, and
Ma
,
Q.
,
2001
, “
Metal Film Crawling in Interconnected Structures Caused by Cyclic Temperatures
,”
Acta Mater.
,
49
(
15
), pp.
3039
3049
.
5.
Huang
,
M.
,
Suo
,
Z.
, and
Ma
,
Q.
,
2002
, “
Plastic Ratcheting Induced Cracks in Thin Film Structures
,”
J. Mech. Phys. Solids
,
50
(
5
), pp.
1079
1098
.
6.
Suo
,
Z.
,
1998
, “
Stable State of Interconnect Under Temperature Change and Electric Current
,”
Acta Mater.
,
46
(
11
), pp.
3725
3732
.
7.
Okazaki
,
M.
,
Yamagishi
,
S.
,
Sakaguchi
,
M.
, and
Rajivgandhi
,
S.
,
2012
, “
Specific Failures of Superalloys With Thermal Barrier Coatings Subjected to Thermo‐Mechanical Fatigue Loadings With a Thermal Gradient in a Simulated Combustion Environment
,” Superalloys 2012,
E. S.
Huron
,
R. C.
Reed
,
M. C.
Hardy
,
M. J.
Mills
,
R. E.
Montero
,
P. D.
Portella
, and
J.
Telesman
, eds., Wiley, Seven Springs, PA, pp.
445
454
.
8.
Hübel
,
H.
, and
Vollrath
,
B.
,
2017
, “
Ratcheting Caused by Moving Loads
,”
Int. J. Adv. Struct. Eng.
,
9
(
2
), pp.
139
152
.
9.
Hübel
,
H.
,
1996
, “
Basic Conditions for Material and Structural Ratcheting
,”
Nucl. Eng. Des.
,
162
(
1
), pp.
55
65
.
10.
Chaboche
,
J. L.
,
1991
, “
On Some Modifications of Kinematic Hardening to Improve the Description of Ratchetting Effects
,”
Int. J. Plast.
,
7
(
7
), pp.
661
678
.
11.
Hübel
,
H.
,
2016
,
Simplified Theory of Plastic Zones
,
Springer International Publishing
,
Cham, Switzerland
.
12.
Kang
,
G.
, and
Kan
,
Q.
,
2017
,
Cyclic Plasticity of Engineering Materials
, Wiley, Hoboken, NJ.
13.
Chen
,
X.
,
Chen
,
X.
,
Yu
,
W.
, and
Li
,
D.
,
2015
, “
Ratcheting Behavior of Pressurized 90_Elbow Piping Subjected to Reversed In-Plane Bending With a Combined Hardening Model
,”
Int. J. Pressure Vessels Piping
,
137
, pp.
28
37
.
14.
Shi
,
H.
,
Chen
,
G.
,
Wang
,
Y.
, and
Chen
,
X.
,
2013
, “
Ratcheting Behavior of Pressurized Elbow Pipe With Local Wall Thinning
,”
Int. J. Pressure Vessels Piping
,
102–103
, pp.
14
23
.
15.
Vishnuvardhan
,
S.
,
Raghava
,
G.
,
Gandhi
,
P.
,
Goyal
,
S.
,
Gupta
,
S. K.
, and
Bhasin
,
V.
,
2013
, “
Ratcheting Strain Assessment in Pressurised Stainless Steel Elbows Subjected to In-Plane Bending
,”
Procedia Eng.
,
55
, pp.
666
670
.
16.
Angiolini
,
M. E.
,
Aiello
,
G.
,
Matheron
,
P.
,
Pilloni
,
L.
, and
Giannuzzi
,
G. M.
,
2016
, “
Thermal Ratcheting of a P91 Steel Cylinder Under an Axial Moving Temperature Distribution
,”
J. Nucl. Mater.
,
472
, pp.
215
226
.
17.
Watanabe
,
D.
,
Chuman
,
Y.
,
Otani
,
T.
,
Shibamoto
,
H.
,
Inoue
,
K.
, and
Kasahara
,
N.
,
2008
, “
An Experimental Validation of the Guideline for Inelastic Design Analysis Through Structural Model Tests
,”
Nucl. Eng. Des.
,
238
(
2
), pp.
389
398
.
18.
Lee
,
H.-Y.
,
Kim
,
J.-B.
, and
Lee
,
J.-H.
,
2003
, “
Thermal Ratchetting Deformation of a 316 L Stainless Steel Cylindrical Structure Under an Axial Moving Temperature Distribution
,”
Int. J. Pressure Vessels Piping
,
80
(
1
), pp.
41
48
.
19.
Hübel
,
H.
, and
Vollrath
,
B.
,
2018
, “
Simplified Analysis of Strains Accumulated in the State of Elastic Shakedown Considering Multi-Parameter Loadings
,”
ASME
Paper No. PVP2018-84070.
20.
ASME,
2015
,
Boiler and Pressure Vessel Code
, Section III, Division 1,
ASME
,
New York
.
21.
Ponter
,
A. R. S.
, and
Cocks
,
A.C.F.
,
2014
, “
The Anderson-Bishop Problem—Thermal Ratchetting of a Polycrystalline Metals
,”
Direct Methods for Limit States in Structures and Materials
,
K.
Spiliopoulos
, and
D.
Weichert
, eds.,
Springer Science + Business Media
,
Dordrecht
, The Netherlands, pp.
243
255
.
22.
Halphen
,
B.
,
1976
,
L’accommodation Des Structures Élastoplastiques à écrouissage Cinématique
,
C.R. Académie Des Sciences
,
Paris
, pp.
799
802
.
23.
Halama
,
R.
,
Fajkoš
,
R.
,
Matušek
,
P.
,
Bábková
,
P.
,
Fojtík
,
F.
, and
Václavek
,
L.
,
2011
, “
Contact Defects Initiation in Railroad Wheels—Experience, Experiments and Modelling
,”
Wear
,
271
(
1–2
), pp.
174
185
.
24.
Pun
,
C. L.
,
Kan
,
Q.
,
Mutton
,
P. J.
,
Kang
,
G.
, and
Yan
,
W.
,
2015
, “
An Efficient Computational Approach to Evaluate the Ratcheting Performance of Rail Steels Under Cyclic Rolling Contact in Service
,”
Int. J. Mech. Sci.
,
101–102
, pp.
214
226
.
25.
Srivastava
,
J. P.
,
Ravi Kiran
,
M. V.
,
Sarkar
,
P. K.
, and
Ranjan
,
V.
,
2017
, “
Numerical Investigation of Ratchetting Behaviour in Rail Steel Under Cyclic Rolling-Sliding Contact
,”
Procedia Eng.
,
173
, pp.
1130
1137
.
26.
Bhattacharyya
,
M.
,
Fau
,
A.
,
Nackenhorst
,
U.
,
Néron
,
D.
, and
Ladevèze
,
P.
,
2017
, “
A LATIN-Based Model Reduction Approach for the Simulation of Cycling Damage
,”
Comput. Mech.
,
62
(4), pp. 725–743.
27.
Barbera
,
D.
,
Chen
,
H.
,
Liu
,
Y.
, and
Xuan
,
F.-Z.
,
2017
, “
Recent Developments of the Linear Matching Method Framework for Structural Integrity Assessment
,”
ASME J. Pressure Vessel Technol.
,
139
(
5
), pp. 1–23.
You do not currently have access to this content.