As the debris flow caused by sustained rainfall would cause destructive damage to buried pipeline, the safety of buried pipeline under impact of debris flow draws increasing attention. This paper focuses on the mechanical and deformed behavior of buried pipeline subjected to the debris flow. The effects of relevant parameters are investigated, including the velocity and impact angle of debris flow, massive stone, diameter to thickness ratio of pipeline (D/T), and parameters of corrosion pit (i.e., the depth, length, and width of corrosion pit). A finite model of soil and buried pipeline under the impact of debris flow is established. Multiple regression analysis is implemented to evaluate these influence parameters. The results show that: (1) the velocity and the impact angle of debris flow have a great influence on the pipeline; (2) the massive stone in the debris flow has little effect on the buried pipeline; (3) the internal pressure of the pipeline has an inhibitory effect on the deformation of the pipeline, which can enhance the ultimate bearing velocity of pipeline; (4) D/T determines the ultimate bearing velocity of pipeline. Moreover, the effects of the parameters of corrosion pit on the maximum von Mises stress are analyzed by multiple regression and ranked as follows: corrosion depth (A) > corrosion length (L) > corrosion width (B). The result may provide effective guidance for the prevention of pipeline against debris flow in mountain area.

References

References
1.
Zhang
,
B. J.
,
2013
, “
Research on Strength Behavior of Long-Distance Buried Pipe for Oil and Gas Transportation in the Landslide Area
,” Ph.D. dissertation, Zhe Jiang University, Hangzhou, China.
2.
Hu
,
K. H.
,
Wei
,
F.
, and
Li
,
Y.
,
2011
, “
Real-Time Measurement and Preliminary Analysis of Debris-Flow Impact Force at Jiangjia Ravine, China
,”
Earth Surf. Processes Landforms
,
36
(
9
), pp.
1268
1278
.
3.
Haehnel
,
R. B.
, and
Daly
,
S. F.
,
2004
, “
Maximum Impact Force of Woody Debris on Floodplain Structures
,”
ASCE J. Hydraul. Eng.
,
130
(
2
), pp.
112
120
.
4.
Zanuttigh
,
B.
, and
Lambert
,
A.
,
2006
, “
Experimental Analysis of the Impact of Dry Avalanches on Structures and Implication for Debris Flows
,”
J. Hydraul. Res.
,
44
(
4
), pp.
522
534
.
5.
Shieh
,
C. L.
,
Ting
,
C. H.
, and
Pan
,
H. W.
,
2008
, “
Impulsive Force of Debris Flow on a Curved Dam
,”
Int. J. Sediment Res.
,
23
(
2
), pp.
149
158
.
6.
Hübl
,
J.
,
Suda
,
J.
,
Proske
,
D.
,
Kaitna
,
R.
, and
Scheidl
,
C.
,
2009
, “
Debris Flow Impact Estimation
,”
International Symposium on Water Management and Hydraulic Engineering
,
Ohrid, Mcedonia
, pp.
137
148
.
7.
Moriguchi
,
S.
,
Borja
,
R. I.
,
Yashima
,
A.
, and
Sawada
,
K.
,
2009
, “
Estimating the Impact Force Generated by Granular Flow on a Rigid Obstruction
,”
Acta Geotech.
,
4
(
1
), pp.
57
71
.
8.
Wendeler
,
C.
,
Volkwein
,
A.
,
Denk
,
M.
,
Roth
,
A.
, and
Wartmann
,
S.
,
2007
, “
Field Measurements Used for Numerical Modelling of Flexible Debris Flow Barriers
,”
Fourth International Conference on Debris-Flow Hazards Mitigation: Mechanics
,
Chengdu, China
, pp.
681
687
.
9.
Bugnion
,
L.
,
McArdell
,
B. W.
,
Bartelt
,
P.
, and
Wendeler
,
C.
,
2011
, “
Measurements of Hillslope Debris Flow Impact Pressure on Obstacles
,”
Landslides.
,
9
(
2
), pp.
179
187
.
10.
Kim
,
S. E.
,
Paik
,
J. C.
, and
Kim
,
K. S.
,
2013
, “
Run-Out Modeling of Debris Flows in Mt. Umyeon Using FLO-2D
,”
J. Korean Soc. Civ. Eng.
,
33
(
3
), pp.
965
974
.
11.
Wei
,
F.
,
Yang
,
H.
,
Hu
,
K.
, and
Chernomorets
,
S.
,
2012
, “
Measuring Internal Velocity of Debris Flows by Temporally Correlated Shear Forces
,”
J. Earth Sci.-China.
,
23
(
3
), pp.
373
380
.
12.
Budetta
,
P.
,
2010
, “
Rockfall-Induced Impact Force Causing a Debris Flow on a Volcanoclastic Soil Slope: A Case Study in Southern Italy
,”
Nat. Hazard Earth Syst. Sci.
,
10
(
9
), pp.
1995
2006
.
13.
Quan Luna
,
B.
,
Blahut
,
J.
,
van Westen
,
C. J.
,
Sterlacchini
,
S.
,
van Asch
,
T. W. J.
, and
Akbas
,
S. O.
,
2011
, “
The Application of Numerical Debris Flow Modelling for the Generation of Physical Vulnerability Curves
,”
Nat. Hazards Earth Syst. Sci.
,
11
, pp.
2047
2060
.
14.
Yang
,
H. J.
,
Wei
,
F. G.
,
Hu
,
K. H.
,
Chernomorets
,
S.
,
Hong
,
Y.
,
Li
,
X. Y.
, and
Xie
,
T.
,
2011
, “
Measuring the Internal Velocity of Debris Flows Using Impact Pressure Detecting in the Flume Experiment
,”
J. Mt. Sci.
,
8
(
2
), pp.
109
116
.
15.
Scheidl
,
C.
,
Chiari
,
M.
,
Kaitna
,
R.
,
Müllegger
,
M.
,
Krawtschuk
,
A.
,
Zimmermann
,
T.
, and
Proske
,
D.
,
2013
, “
Analysing Debris-Flow Impact Model, Based on a Small Scale Modeling Approach
,”
Surv. Geophys.
,
34
(
1
), pp.
121
140
.
16.
Kim
,
Y.
,
Nakagawa
,
H.
,
Kawaike
,
K.
, and
Zhang
,
H.
,
2013
, “
Study on Impact Force of Debris Flow Due to Variable of Check Dam Shape
,”
J. Disaster Res.
,
8
(
1
), pp.
195
196
.
17.
Hu
,
K. H.
,
Cui
,
P.
, and
Zhang
,
J. Q.
,
2012
, “
Characteristics of Damage to Buildings by Debris Flows on 7 August 2010 in Zhouqu, Western China
,”
Nat. Hazards Earth Syst. Sci.
,
12
(
7
), pp.
2209
2217
.
18.
Zeng
,
C.
,
Cui
,
P.
,
Su
,
Z.
,
Lei
,
Y.
, and
Chen
,
R.
,
2015
, “
Failure Modes of Reinforced Concrete Columns of Buildings Under Debris Flow Impact
,”
Landslides.
,
12
(
3
), pp.
561
571
.
19.
Zakeri
,
A.
,
Høeg
,
K.
, and
Nadim
,
F.
,
2009
, “
Submarine Debris Flow Impact on Pipelines—Part I: Experimental Investigation
,”
Coast Eng.
,
55
(
12
), pp.
1209
1218
.
20.
Zakeri
,
A.
,
Høeg
,
K.
, and
Nadim
,
F.
,
2009
, “
Submarine Debris Flow Impact on Pipelines—Part II: Numerical Analysis
,”
Coast Eng.
,
56
(
1
), pp.
1
10
.
21.
Yuan
,
F.
,
Wang
,
L. Z.
,
Guo
,
Z.
, and
Xie
,
Y. G.
,
2012
, “
A Refined Analytical Model for Landslide or Debris Flow Impact on Pipelines—Part I: Surface Pipelines
,”
Appl. Ocean Res.
,
35
(
1
), pp.
95
104
.
22.
Yuan
,
F.
,
Wang
,
L. Z.
,
Guo
,
Z.
, and
Xie
,
Y. G.
,
2012
, “
A Refined Analytical Model for Landslide or Debris Flow Impact on Pipelines—Part II: Embedded Pipelines
,”
Appl. Ocean Res.
,
35
(
1
), pp.
105
114
.
23.
Liao
,
G. Y.
, and
Huang
,
X. M.
,
2008
,
Application of ABAQUS Finite Element Software in Road Engineering
,
Southeast University Press
,
Nanjing, China
.
24.
MOHURD
,
2017
, “
Seismic Technical Code for Oil and Gas Transmission Pipeline Engineering
,” Ministry of Housing and Urban-Rural Development, Beijing. Standard No. GB/T50470.
25.
Hill
,
R.
,
1952
, “
On Discontinuous Plastic States, With Special Reference to Localized Necking in Thin Sheets
,”
J. Mech. Phys. Solids.
,
1
(
1
), pp.
19
30
.
26.
Kang
,
Z. C.
,
Cui
,
P.
,
Wei
,
F. Q.
, and
He
,
S. F.
,
2007
,
Observational Experimental Data Set of the Dong Chuan Debris Flow Observation and Research Station of the Chinese Academy of Sciences (1995-2000)
,
Science Press
,
Beijing, China
.
27.
Chen
,
Y. F.
,
Li
,
X.
, and
Zhou
,
J.
,
2011
, “
Ultimate Flexural Capacity of Pipe With Corrosion Defects Subject to Combined Loadings
,”
China J. Comput. Mech.
,
28
(
1
), pp.
132
139
.
28.
Xiao
,
G. Q.
,
Feng
,
M. Y.
, and
Zhang
,
H. B.
,
Chen, J.
,
Wang, F. X.
, and
Yu, H. H.
,
2015
, “
Study on Failure Assessment for X80 High-Grade Pipeline With Corrosion Defects
,”
J Saf. Sci Technol.
,
11
(
6
), pp.
126
131
(in Chinese).
29.
ASME
,
2009
, “
Manual for Determining the Remaining Strength of Corroded Pipelines
,” American Society of Mechanical Engineers, New York, Standard No.
B31G-2009
.
30.
Yu
,
X.
, and
Chen
,
X.
,
2017
, “
Variational Laws of Debris Flow Impact Force on the Check Dam Surface Based on Orthogonal Experiment Design
,”
Geotech. Geol. Eng.
,
35
(
2
), pp.
1
12
.
31.
Fran Mann
,
C. M.
, and
Yao
,
D. J.
,
1986
,
Debris Flow
,
Science Press
,
Beijing, China
.
You do not currently have access to this content.