Due to the multimodal and dispersive characteristics of guided waves, guided wave testing signals are always overlapped and difficult to separate for correct interpretations. To this end, a simplified dispersion compensation algorithm is put forward in this paper. The dispersion elimination is accomplished by compensating the second-order nonlinear phase shift of guided wave signals, which is the cause of the dispersion when narrow band exciting signals are used. This algorithm is easy to implement and has no need of prior knowledge of the guided wave dispersion relationship. Considering that the center frequency, which is a key parameter for this algorithm, is nearly impossible to determine accurately in practical applications, the effect of the center frequency deviation on the algorithm is further studied. Both theoretical analysis and numerical simulation indicate the insensitivity of the algorithm to the deviation of the center frequency, and hence, there is no need to determine the center frequency accurately, facilitating the practical use of the algorithm. Based on this simplified dispersion compensation algorithm and in cooperation with the matching pursuit method, the mode separation is further performed for interpreting of overlapped guided wave signals. Dispersion compensation is first applied to the testing signal with respect to a certain mode which will compress the waveform of the mode while the others still spread. Then, this compressed waveform is separated with the Gabor based matching pursuit method. Both simulation and experiment are designed to demonstrate the effectiveness of the proposed methods.

References

References
1.
Rose
,
J. L.
,
2014
,
Ultrasonic Guided Waves in Solid Media
,
Cambridge University Press
,
Cambridge, UK
.
2.
Wicox
,
P.
,
Lowe
,
M.
, and
Cawley
,
P.
,
2001
, “
The Effect of Dispersion on Long-Range Inspection Using Ultrasonic Guided Waves
,”
NDTE Int.
,
34
(1), pp.
1
9
.
3.
Mitra
,
M.
, and
Gopalakrishnan
,
S.
,
2016
, “
Guided Wave Based Structural Health Monitoring: A Review
,”
Smart Mater. Struct.
,
25
(5), p.
053001
.
4.
Marc
,
N.
,
Laurence
,
J. J.
,
Qu
,
J.
, and
Jacke
,
J.
,
2001
, “
Time-Frequency Representation of Lamb Waves
,”
J. Acoust. Soc. Am.
,
109
(5), pp.
1841
1847
.
5.
Prosser
,
W.
,
Seale
,
M. D.
, and
Smith
,
B. T.
,
1999
, “
Time-Frequency Analysis of the Dispersion of Lamb Modes
,”
J. Acoust. Soc. Am.
,
105
(
5
), pp.
2669
2676
.
6.
Kim
,
Y. Y.
, and
Kim
,
E. H.
,
2001
, “
Effectiveness of the Continuous Wavelet Transform in the Analysis of Some Dispersive Elastic Waves
,”
J. Acoust. Soc. Am.
,
110
(
1
), pp.
86
94
.
7.
Mann
,
S.
, and
Haykin
,
S.
,
1991
, “
The Chirplet Transform: A Generalization of Gabor's Logon Transform
,” Vision Interface '91, Canadian Image Processing and Patern Recognition Society, Calgary, AB, Canada, pp.
205
212
.
8.
Hong
,
J. C.
,
Sun
,
K. H.
, and
Kim
,
Y. Y.
,
2005
, “
Dispersion-Based Short-Time Fourier Transform Applied to Dispersive Wave Analysis
,”
J. Acoust. Soc. Am.
,
117
(
5
), pp.
2949
2960
.
9.
Kutting
,
H.
,
Niethammer
,
M.
,
Hurlebaus
,
S.
, and
Jacobs
,
L. J.
,
2006
, “
Model-Based Analysis of Dispersion Curves Using Chiplets
,”
J. Acoust. Soc. Am.
,
119
, pp.
2122
2130
.
10.
Kim
,
C. Y.
, and
Park
,
K. J.
,
2015
, “
Mode Separation and Characterization of Torsional Guided Wave Signals Reflected From Defects Using Chirplet Transform
,”
NDTE Int.
,
74
, pp.
15
23
.
11.
Peng
,
Z.
,
Meng
,
G.
,
Chu
,
F.
,
Lang
,
Z.
,
Zhang
,
W.
, and
Yang
,
Y.
,
2011
, “
Polynomial Chirplet Transform With Application to Instantaneous Frequency Estimation
,”
IEEE Trans. Instrum. Meas.
,
60
(
9
), pp.
3222
3229
.
12.
Yang
,
Y.
,
Peng
,
Z.
,
Meng
,
G.
, and
Zhang
,
W.
,
2012
, “
Spline-Kernelled Chirplet Transform for the Analysis of Signals With Time-Varying Frequency and Its Application
,”
IEEE Trans. Ind. Electron.
,
59
(
3
), pp.
1612
1621
.
13.
Yang
,
Y.
,
Peng
,
Z.
,
Zhang
,
W.
, and
Meng
,
G.
,
2014
, “
Frequency-Varying Group Delay Estimation Using Frequency Domain Polynomial Chirplet Transform
,”
Mech. Syst. Signal Process.
,
46
(
1
), pp.
146
162
.
14.
Yang
,
Y.
,
Peng
,
Z.
,
Zhang
,
W.
,
Meng
,
G.
, and
Lang
,
Z.
,
2016
, “
Dispersion Analysis for Broad Band Guided Wave Using Generalized Warblet Transform
,”
J. Sound Vib.
,
367
, pp.
22
36
.
15.
Mallat
,
G.
, and
Zhang
,
Z.
,
1993
, “
Matching Pursuits With Time Frequency Dictionaries
,”
IEEE Trans. Signal Process.
,
41
, pp.
3397
3415
.
16.
Hong
,
J.
,
Sun
,
K.
, and
Kim
,
Y.
,
2005
, “
The Matching Pursuit Approach Based on the Modulated Gaussian Pulse for Efficient Guided-Wave Damage Inspection
,”
Smart Mater. Struct.
,
14
(
4
), pp.
548
560
.
17.
Li
,
F.
,
Su
,
Z.
,
Ye
,
L.
, and
Meng
,
G.
,
2006
, “
A Correlation Filtering-Based Matching Pursuit (CF-MP) for Damage Identification Using Lamb Waves
,”
Smart Mater. Struct.
,
15
(
6
), pp.
1585
1594
.
18.
Tse
,
P.
, and
Wang
,
X.
,
2013
, “
Characterization of Pipe Line Defect in Guided-Waves Based Inspection Through Matching Pursuit With the Optimized Dictionary
,”
NDTE Int.
,
54
, pp.
171
182
.
19.
Raghavan
,
A.
, and
Cesnik
,
C.
,
2007
, “
Guided-Wave Signal Processing Using Chirplet Matching Pursuits and Mode Correlation for Structural Health Monitoring
,”
Smart Mater. Struct.
,
16
(
2
), pp.
355
366
.
20.
Hong
,
J.
,
Sun
,
K.
, and
Kim
,
Y.
,
2006
, “
Waveguide Damage Detection by the Matching Pursuit Approach Employing the Dispersion-Based Chirp Functions
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
53
, pp.
592
604
.
21.
Alleyne
,
D. N.
,
Pialucha
,
T. P.
, and
Cawley
,
P.
,
1993
, “
A Signal Regeneration Technique for Long-Range Propagation of Dispersive Lamb Waves
,”
Ultrasonics
,
31
(
3
), p.
201
.
22.
Ing
,
R. K.
, and
Fink
,
M.
,
1998
, “
Self-Focusing and Time Recompression of Lamb Waves Using a Time Reversal Mirror
,”
Ultrasonics
,
36
(
1–5
), pp.
179
186
.
23.
Sicard
,
R.
,
Goyette
,
J.
, and
Zellouf
,
D.
,
2002
, “
A Numerical Dispersion Compensation Technique for Time Recompression of Lamb Wave Signals
,”
Ultrasonics
,
40
(
1–8
), pp.
727
732
.
24.
Wilcox
,
P. D.
,
2003
, “
A Rapid Signal Processing Technique to Remove the Effect of Dispersion From Guided Wave Signals
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
50
(
4
), pp.
419
427
.
25.
Marchi
,
L. D.
,
Marzani
,
A.
,
Caporale
,
S.
,
Speciale
,
N.
, and
Marzani
,
A.
,
2009
, “
Ultrasoinc Guided-Waves Characterization With Warped Frequency Transforms
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
56
, pp.
2232
2240
.
26.
Marchi
,
L. D.
,
Marzani
,
A.
,
Speciale
,
N.
, and
Viola
,
E.
,
2011
, “
A Passive Monitoring Technique Based on Dispersion Compensation to Locate Impacts in Plate-Like Structures
,”
Smart Mater. Struct.
,
20
(3), p.
035021
.
27.
Liu
,
L.
, and
Yuan
,
F. G.
,
2010
, “
A Linear Mapping Technique for Dispersion Removal of Lamb Waves
,”
Struct. Health Monit.
,
9
(
1
), pp.
75
86
.
28.
Cai
,
J.
,
Yuan
,
S.
, and
Wang
,
T.
,
2017
, “
Signal Construction-Based Dispersion Compensation of Lamb Waves Considering Signal Waveform and Amplitude Spectrum Preservation
,”
Materials
,
10
(
1
), p.
4
.
29.
Xu
,
K.
,
Ta
,
D.
,
Moilanen
,
P.
, and
Wang
,
W.
,
2012
, “
Mode Separation of Lamb Waves Based on Dispersion Compensation Method
,”
J. Acoust. Soc. Am.
,
131
(
4
), pp.
2714
2722
.
30.
Hayashi
,
T.
,
Tamayama
,
C.
, and
Murase
,
M.
,
2006
, “
Wave Structure Analysis of Guided Waves in a Bar With an Arbitrary Cross-Section
,”
Ultrasonics
,
44
(
1
), pp.
17
24
.
You do not currently have access to this content.