Abrasive waterjet (AWJ) peening can be used for metal surface strengthening by introducing near-surface plastic strain and compressive residual stress. The present studies seldom focus on residual stress by AWJ peening of targets with different geometrical features. In fact, those targets usually exist on some machine parts including gear roots, shaft shoulders, and stress concentration areas. According to Hertz theory of contact and Miao's theoretical model for predicting residual stress of flat surface, this paper developed a theoretical model for investigating residual stress of targets with different geometrical features including concave arc surface, concave sphere surface, convex arc surface, and sphere surface. AWJ peening of targets with different geometrical features and different radii of Gaussian curved surface was simulated by abaqus. Theoretical results were consistent with numerical simulation results and published experimental results (H. Y. Miao, S. Larose, et al., 2010, “An analytical approach to relate shot peening parameters to Almen intensity,” Surf. Coat. Technol., 205, pp. 2055–2066; Cao et al., 1995, “Correlation of Almen arc height with residual stresses in shot peening process”, Mater. Sci. Technol. 11, pp. 967–973.), which will be helpful for predicting residual stress of gear roots, shaft shoulders, and stress concentration areas after AWJ peening. The research results showed that under the same peening parameters, σmax, σtop, dmax, and dbottom in concave surface (including concave arc surface and concave sphere surface) were the maximum; σmax, σtop, dmax, and dbottom in convex surface (including convex arc surface and sphere surface) were the minimum; for concave surface, σtop, σmax, dbottom, and dmax decreased, respectively, with target radius; for convex surface, σtop, σmax, dbottom, and dmax increased, respectively, with target radius.

References

References
1.
Folkes
,
J.
,
2009
, “
Waterjet—An Innovative Tool for Manufacturing
,”
J. Mater. Process. Technol.
,
209
, pp.
6181
6189
.
2.
Hashish
,
M.
,
1984
, “
A Modeling Study of Metal Cutting With Abrasive Waterjets
,”
ASME J. Eng. Mater. Technol.
,
106
, pp.
88
100
.
3.
Xie
,
J.
, and
Rittel
,
D.
,
2017
, “
A Two-Dimensional Model for Metallic Surface Roughness Resulting From Pure Waterjet Peening
,”
Int. J. Eng. Sci.
,
120
, pp.
189
198
.
4.
Kamarudin
,
N. H.
,
Prasada
,
R. A. K.
, and
Azhari
,
A.
,
2016
, “
CFD Based Erosion Modelling of Abrasive Waterjet Nozzle Using Discrete Phase Method
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
114
, p.
012016
.
5.
Alsoufi
,
M. S.
,
Suker
,
D. K.
,
Alsabban
,
A. S.
, and
Azam
,
S.
,
2016
, “
Experimental Study of Surface Roughness and Micro-Hardness Obtained by Cutting Carbon Steel With Abrasive WaterJet and Laser Beam Technologies
,”
Am. J. Mech. Eng.
,
4
(
5
), pp.
173
181
.
6.
Wang
,
J.
,
Gao
,
N.
, and
Gong
,
W.
,
2010
, “
Abrasive Waterjet Machining Simulation by SPH Method
,”
Int. J. Adv. Manuf. Technol.
,
50
(
1–4
), pp.
227
234
.
7.
Sadasivam
,
B.
, and
Arola
,
D.
,
2012
, “
An Examination of Abrasive Waterjet Peening With Elastic Pre-Stress and the Effects of Boundary Conditions
,”
Mach. Sci. Technol.
,
16
, pp.
71
95
.
8.
Azhari
,
A.
,
Schindler
,
C.
,
Hilbert
,
K.
,
Godard, C.
, and
Kerscher, E.
,
2014
, “
Influence of Waterjet Peening and Smoothing on the Material Surface and Properties of Stainless Steel 304
,”
Surf. Coat. Technol.
,
258
, pp.
1176
1182
.
9.
Dong
,
D.
, and
Fricke
,
A. L.
,
2012
, “
CFD Simulation of Flow in an Abrasive Water Suspension Jet: The Effect of Inlet Operating Pressure and Volume Fraction on Skin Friction and Exit Kinetic Energy
,”
Adv. Mech. Eng.
,
4
, p. 186430.
10.
Arola
,
D.
, and
Mccain
,
M. L.
,
2000
, “
Abrasive Waterjet Peening: A New Method of Surface Preparation for Metal Orthopedic Implants
,”
J. Biomed. Mater. Res.
,
53
, p.
536
.
11.
Arola
,
D.
, and
Ramulu
,
M.
,
1997
, “
Material Removal in Abrasive Waterjet Machining of Metals, a Residual Stress Analysis
,”
Wear
,
211
(
2
), pp.
302
310
.
12.
Arola
,
D.
,
McCain
,
M. L.
,
Kunaporn
,
S.
, and
Ramulu
,
M.
,
2001
, “
Waterjet and Abrasive Waterjet Surface Treatment of Titanium: A Comparison of Surface Texture and Residual Stress
,”
Wear
,
249
(
10–11
), pp.
943
950
.
13.
Keaveny
,
T. M.
, and
Bartel
,
D. L.
,
2001
, “
Mechanical Consequences of Bone Ingrowth in a Hip Prosthesis Inserted Without Cement
,”
J. Bone Jt. Surg. Am.
,
77
(
6
), pp.
911
923
.
14.
Arola
,
D.
,
Alade
,
A. E.
, and
Weber
,
W.
,
2006
, “
Improving Fatigue Strength of Metals Using Abrasive Waterjet Peening
,”
Mach. Sci. Technol.
,
10
(
2
), pp.
197
218
.
15.
Rajesh
,
N.
, and
Babu
,
N. R.
,
2005
, “
Empirical Modelling of Water-Jet Peening of 6063-T6 Aluminium Alloy
,”
J. Inst. Eng., PR
,
86
(
9
), pp.
22
26
.
16.
Rajesh
,
N.
,
Veeraraghavan
,
S.
, and
Babu
,
N. R.
,
2004
, “
A Novel Approach for Modelling of Water Jet Peening
,”
Int. J. Mach. Tools Manuf.
,
44
(
7–8
), pp.
855
863
.
17.
Rajesh
,
N.
, and
Babu
,
N. R.
,
2006
, “
Multidroplet Impact Model for Prediction of Residual Stresses in Water Jet Peening of Materials
,”
Mater. Manuf. Process.
,
21
(
4
), pp.
399
409
.
18.
Anwar
,
S.
,
Axinte
,
D. A.
, and
Becker
,
A. A.
,
2013
, “
Finite Element Modelling of Overlapping Abrasive Waterjet Milled Footprints
,”
Wear
,
30
(
1–2
), pp.
426
436
.
19.
Hao
,
T. T.
,
Wei
,
X. G.
,
Zheng
,
Z. J.
, and
Zhang
,
H. L.
,
2013
, “
Numerical Simulation of Residual Stresses in Pre-Mixed Water Jet Shot Peening
,”
Heat Treat. Technol. Equip.
,
34
(
5
), pp.
44
48
.
20.
Dong
,
X.
,
Wang
,
R. H.
, and
Duan
,
X.
,
2008
, “
Study of Premixed Water Jet Critical Shot Peering Pressure
,”
J. China Coal Soc.
,
33
(
4
), pp.
462
466
.
21.
Li
,
J. K.
,
Yao
,
M.
,
Wang
,
D.
, and
Wang
,
R. Z.
,
1991
, “
Mechanical Approach to the Residual Stress Field Induced by Shot Peening
,”
Mater. Sci. Eng.
,
147
(
2
), pp.
167
173
.
22.
Shen
,
S.
,
Han
,
Z. D.
,
Herrera
,
C. A.
, and
Atluri
,
S. N.
,
2004
, “
Assessment, Development, and Validation of Computational Fracture Mechanics Methodologies and Tools for Shot-Peened Materials Used in Rotorcraft Principal Structural Elements
,” Federal Aviation Administration, Springfield, VA, Report No.
DOT/FAA/AR-03/76
.
23.
Miao
,
H. Y.
,
Larose
,
S.
,
Perron
,
C.
, and
Levesque
,
M.
,
2010
, “
An Analytical Approach to Relate Shot Peening Parameters to Almen Intensity
,”
Surf. Coat. Technol.
,
205
(
7
), pp.
2055
2066
.
24.
Meguid
,
S. A.
,
Shagal
,
G.
,
Stranart
,
J. C.
, and
Daly
,
J.
,
1999
, “
Three—Dimensional Dynamic Finite Element Analysis of Shot-Peening Induced Residual Stresses
,”
Finite Elem. Anal. Des.
,
31
(
3
), pp.
179
191
.
25.
Zhang
,
H. W.
,
Zhang
,
Y. D.
, and
Qiong
,
W. U.
,
2010
, “
Three-Dimensional Numerical Analysis of Residual Stress Field for Shot-Peening
,”
J. Aerosp. Power
,
25
(
3
), pp.
603
609
.
26.
Kumar
,
N.
, and
Shukla
,
M.
,
2012
, “
Finite Element Analysis of Multi-Particle Impact on Erosion in Abrasive Water Jet Machining of Titanium Alloy
,”
J. Comput. Appl. Math.
,
236
(
18
), pp.
4600
4610
.
27.
Brokmeier
,
H.
,
Avalos
,
M. C.
,
Bolmaro
,
R. E.
, and
Maawad
,
E.
,
2014
, “
Surface Microstructure Modification in Square Extruded Al–Nb Powder Composites by Shot Peening
,” IOP Conf. Ser.: Mater. Sci. Eng.,
63
, p. 012015.
28.
Zhao
,
C.
,
Gao
,
Y. K.
,
Guo
,
J.
,
Wang
,
Q.
,
Fu
,
L. C.
, and
Yang
,
Q. X.
,
2015
, “
Investigation on Residual Stress Induced by Shot Peening
,”
J. Mater. Eng. Perform.
,
24
(
3
), pp.
1
7
.
29.
He
,
Z. S.
,
Zhao
,
S. S.
,
Fu
,
T.
,
Chen
,
L.
,
Zhang
,
Y. X.
,
Zhang
,
M.
, and
Wang
,
P. Z.
,
2018
, “
Experimental and Numerical Analysis of Water Jet Peening on 6061 Aluminum Alloy
,”
ASME J. Pressure Vessel Technol.
,
140
(
2
), p.
021406
.
30.
Cao
,
W.
,
Fathallah
,
R.
, and
Castex
,
L.
,
1995
, “
Correlation of Almen Arc Height With Residual Stresses in Shot Peening Process
,”
Mater. Sci. Technol.
,
11
(
9
), pp.
967
973
.
You do not currently have access to this content.