Earthquakes represent a class of natural-technical (NaTech) hazards which in the past have been responsible of major accidents and significant losses in many industrial sites. However, while codes and standards are issued to design specific structures and equipment in both the civil and industrial domain, established procedures for seismic quantitative risk assessment (QRA) of process plants are not yet available. In this paper, a critical review of seismic QRA methods applicable to process plants is carried out. Their limitations are highlighted and areas where further research is needed are identified. This will allow to refine modeling tools in order to increase the capabilities of risk analysis in process plants subjected to earthquakes.

References

References
1.
Krausmann
,
E.
,
Cozzani
,
V.
,
Salzano
,
E.
, and
Renni
,
E.
,
2011
, “
Industrial Accidents Triggered by Natural Hazards: An Emerging Risk Issue
,”
Nat. Hazard Earth Sys.
,
11
(
3
), pp.
921
929
.
2.
Campedel
,
M.
,
2008
, “
Analysis of Major Industrial Accidents Triggered by Natural Events Reported in the Principal Available Chemical Accident Databases
,” Institute for the Protection and Security of the Citizen, Ispra, Italy, Report No.
EUR 23391 EN
.https://core.ac.uk/download/pdf/38617902.pdf
3.
European Parliament
,
2012
, “
Directive 2012/18/EU (Seveso III) on the Control of Major-Accident Hazards Involving Dangerous Substances Amending and Subsequently Repealing Council Directive 96/82/EC
,”
European Union, Bruxelles
, pp.
1
37
.
4.
Girgin
,
S.
, and
Krausmann
,
E.
,
2013
, “
RAPID-N: Rapid Natech Risk Assessment and Mapping Framework
,”
J. Loss Prev. Process
,
26
(
6
), pp.
949
960
.
5.
HAZUS
,
2001
,
Earthquake Loss Estimation Methodology
,
National Institute of Building Science, Risk Management Solutions
,
Menlo Park, CA
.
6.
Hinz
,
G.
, and
Kerkhof
,
K.
,
2013
, “
System Identification and Reduction of Vibrations of Piping in Different Conditions
,”
ASME
Paper No. PVP2013-97694.
7.
McDaniels
,
T.
,
Chang
,
S.
,
Cole
,
D.
,
Mikawoz
,
J.
, and
Longstaff
,
H.
,
2008
, “
Fostering Resilience to Extreme Events Within Infrastructure Systems: Characterizing Decision Contexts for Mitigation and Adaptation
,”
Global Environ. Change
,
18
(
2
), pp.
310
318
.
8.
Choun
,
Y. S.
, and
Elnashai
,
A. S.
,
2010
, “
A Simplified Framework for Probabilistic Earthquake Loss Estimation
,”
Probab. Eng. Mech.
,
25
(
4
), pp.
355
364
.
9.
Huang
,
Y. N.
,
Whittaker
,
A. S.
, and
Luco
,
N.
,
2011
, “
A Probabilistic Risk Assessment Procedure for Nuclear Power Plants—Part I: Methodology
,”
Nucl. Eng. Des.
,
241
(
9
), pp.
3996
4003
.
10.
Huang
,
Y. N.
,
Whittaker
,
A. S.
, and
Luco
,
N.
,
2011
, “
A Probabilistic Seismic Risk Assessment Procedure for Nuclear Power Plants—Part II: Application
,”
Nucl. Eng. Des.
,
241
(9), pp.
3985
3995
.
11.
Kim
,
J. H.
,
Choi
,
I. K.
, and
Park
,
J. H.
,
2011
, “
Uncertainty Analysis of System Fragility for Seismic Safety Evaluation of NPP
,”
Nucl. Eng. Des.
,
241
(
7
), pp.
2570
2579
.
12.
Young
,
S.
,
Balluz
,
L.
, and
Malilay
,
J.
,
2004
, “
Natural and Technologic Hazardous Material Releases During and After Natural Disasters: A Review
,”
Sci. Total Environ.
,
322
(
1–3
), pp.
3
20
.
13.
Kim
,
H.
,
Heo
,
G.
, and
Jung
,
S.
,
2016
, “
QRA considering Multi-Vessel Failure Scenarios Due to a Natural Disaster—Lessons From Fukushima
,”
J. Loss Prev. Process Ind.
,
44
, pp.
699
705
.
14.
TNO
,
1992
, “
Methods for the Determination of Possible Damage, Green Book
,” Director General of Labour, Voorburg, The Netherlands, Report No. CPR16E.
15.
Cozzani
,
V.
, and
Salzano
,
E.
,
2004
, “
Threshold Values for Domino Effects Caused by Blast Wave Interaction With Process Equipment
,”
J. Loss Prev. Process Ind.
,
17
(
6
), pp.
437
447
.
16.
Mingguang
,
Z.
, and
Juncheng
,
J.
,
2008
, “
An Improved Probit Method for Assessment of Domino Effect to Chemical Process Equipment Caused by Overpressure
,”
J. Hazard. Mater.
,
158
(
2–3
), pp.
280
286
.
17.
Antonioni
,
G.
,
Spadoni
,
G.
, and
Cozzani
,
V.
,
2007
, “
A Methodology for the Quantitative Risk Assessment of Major Accidents Triggered by Seismic Events
,”
J. Hazard. Mater.
,
147
(
1–2
), pp.
48
59
.
18.
Campedel
,
M.
,
Cozzani
,
V.
,
Garcia-Aneda
,
A.
, and
Salzano
,
E.
,
2008
, “
Extending the Quantitative Assessment of Industrial Risks to Earthquake Effects
,”
Risk Anal.
,
28
(
5
), pp.
1231
1246
.
19.
Caputo
,
A. C.
,
Giannini
,
R.
, and
Paolacci
,
F.
,
2015
, “
Quantitative Seismic Risk Assessment of Process Plants: State of the Art Review and Directions for Future Research
,”
ASME
Paper No. PVP2015-45374.
20.
Cozzani
,
V.
,
Antonioni
,
G.
,
Landucci
,
G.
,
Tugnoli
,
A.
,
Bonvicini
,
S.
, and
Spadoni
,
G.
,
2014
, “
Quantitative Assessment of Domino and Natech Scenarios in Complex Industrial Areas
,”
J. Loss Prev. Process Ind.
,
28
, pp.
10
22
.
21.
Alessandri
,
S.
,
Caputo
,
A. C.
,
Corritore
,
D.
,
Giannini
,
R.
,
Paolacci
,
F.
, and
Phan
,
H. N.
,
2017
, “
On the Use of Proper Fragility Models for Quantitative Seismic Risk Assessment of Process Plants in Seismic Prone Areas
,”
ASME
Paper No. PVP2017-65137.
22.
Paolacci
,
F.
,
Giannini
,
R.
, and
De Angelis
,
M.
,
2012
, “
Analysis of the Seismic Risk of Major-Hazard Industrial Plants and Applicability of Innovative Seismic Protection Systems
,”
Petrochemicals
,
P.
Vivek
, ed.,
IntechOpen
, London.
23.
Salzano
,
E.
,
Agreda
,
A. G.
,
Carluccio
,
A.
, and
Fabbrocino
,
G.
,
2009
, “
Risk Assessment and Early Warning Systems for Industrial Facilities in Seismic Zones
,”
Reliab. Eng. Syst. Saf.
,
94
(
10
), pp.
1577
1584
.
24.
Paolacci
,
F.
,
Giannini
,
R.
, and
De Angelis
,
M.
,
2013
, “
Seismic Response Mitigation of Chemical Plant Components by Passive Control Systems
,”
J. Loss Prev. Process Ind.
,
26
(
5
), pp.
879
948
.
25.
Karamanos
,
S.
,
Bursi
,
O. S.
,
Reza
,
M. S.
,
Paolacci
,
F.
,
Varelis
,
G.
, and
Hoffmeister
,
B.
,
2013
, “
Structural Safety of Industrial Steel Tanks, Pressure Vessels and Piping Systems Under Seismic Loading
,” INDUSE Project, Research Fund for Coal and Steel, European Union, Luxembourg, Final Report No. RFSR-CT-2009-00022.
26.
Ballantyne
,
D.
,
O'Rourke
,
G.
,
Krinitzsky
,
M.
, and
Ellis
,
L.
,
1991
, “
Lifelines: Costa Rica Earthquake, April 22, 1991
,”
Earthquake Spectra
,
7
(
S2
), pp.
93
117
.
27.
Stepp
,
J. C.
,
Swan
,
S.
,
Wesselink
,
L.
,
Haupt
,
R. W.
,
Larder
,
R. R.
,
Bachman
,
R. E.
,
Malik
,
L.
,
Eli
,
M.
, and
Porush
,
A.
,
1990
, “
Industrial Facilities
,”
Earthquake Spectra
,
6
(
S1
), pp.
189
238
.
28.
Kikic
,
S.
,
Moncraz
,
P.
, and
Noakowsky
,
P.
,
2001
, “
A Preliminary Analysis of the Tupras Refinery Stack Collapse During Kocaeli Earthquake of 17 August 1999
,” CICIND, Zurich, Switzerland, Vol. 17(1), CICIND Report.
29.
Di Carluccio
,
A.
,
Fabbrocino
,
G.
,
Salzano
,
E.
, and
Manfredi
,
G.
,
2008
, “
Analysis of Pressurized Horizontal Vessels Under Seismic Excitation
,”
14th World Conference on Earthquake Engineering
(
WCEE
),
Beijing, China
Oct. 12–17
.https://www.iitk.ac.in/nicee/wcee/article/14_05-01-0222.PDF
30.
Reza
,
M. S.
,
Bursi
,
O. S.
,
Paolacci
,
F.
, and
Kumar
,
A.
,
2014
, “
Performance of Non-Standard Bolted Flange Joints in Industrial Piping Systems Subjected to Seismic Loading
,”
J. Loss Prev. Process Ind.
,
30
, pp.
124
136
.
31.
Thermal and Nuclear Power Engineering Society
,
2011
, “
Special Topic: Reconstruction From the Earthquake (2nd report), Report of the Disaster Situation—Sendai Thermal Power Station and Shin-Sendai Thermal Power Station of Tohoku Electoric Power, Nakoso Power Plant of Joban Joint Power
,” Vol.
62
, Thermal and Nuclear Power Engineering Society, Sendai, Japan, pp. 1–7 (in Japanese).
32.
Jain
,
S. K.
,
Lettis
,
W. R.
,
Murty
,
C. V. R.
, and
Bardet
,
J. P.
,
2002
, “
Bhuj, India Earthquake Reconnaissance Report. Supplement to Earthquake Spectra
,” Vol. 18(S1), Earthquake Engineering Research Institute, Oakland, CA.
33.
Maekawa
,
A.
,
2012
,
Recent Advances in Seismic Response Analysis of Cylindrical Liquid Storage Tanks, Earthquake-Resistant Structures
,
M.
Abbas
, ed.,
IntechOpen
,
London
.
34.
Mikami
,
A.
,
Sato
,
Y.
,
Otani
,
A.
,
Iwamoto
,
K.
, and
Iijima
,
T.
,
2009
, “
The Ultimate Strength of Cylindrical Liquid Storage Tanks Under Earthquakes, Elasto-Plastic Dynamic Analysis With FSI of Buckling Failure Modes
,”
ASME
Paper No. PVP2009-77067.
35.
Cortes
,
G.
, and
Nussbaumer
,
A.
,
2011
, “
Experimental Study on the Seismic Behavior of Shell-Base Connections in Large Storage Tanks
,”
Third International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN)
,
Corfu, Greece
,
May 25–28
, pp.
1
8
.
36.
Matsui
,
T.
,
2009
, “
Sloshing in a Cylindrical Liquid Storage Tank With a Single-Deck Type Floating Roof Under Seismic Excitation
,”
ASME J. Pressure Vessel Technol.
,
131
(
2
), p. 021303.
37.
Matsui
,
T.
, and
Nagaya
,
T.
,
2012
, “
Nonlinear Sloshing in a Floating-Roofed Oil Storage Tank Under Long-Period Seismic Ground Motion
,”
Earthquake Eng. Struct. Dyn.
,
42
(
7
), pp.
973
991
.
38.
Hatayama
,
K.
,
2008
, “
Lessons From the 2003 Tokachi-Oki, Japan, Earthquake for Prediction of Long-Period Strong Ground Motions and Sloshing Damage to Oil Storage Tanks
,”
J. Seismol.
,
12
(
2
), pp.
255
263
.
39.
Salzano
,
E.
,
Iervolino
,
I.
, and
Fabbrocino
,
G.
,
2003
, “
Seismic Risk of Atmospheric Storage Tanks in the Framework of Quantitative Risk Analysis
,”
J. Loss Prev. Process Ind.
,
16
(
5
), pp.
403
409
.
40.
Nishi
,
H.
,
2012
, “
Damage on Hazardous Materials Facilities
,”
International Symposium on Engineering Lessons Learned From the 2011 Great East Japan Earthquake
,”
Tokyo, Japan
,
Mar. 1–4
, pp.
1
12
.
41.
Scawthorn
,
C.
, and
Johnson
,
G. S.
,
2000
, “
Preliminary Report: Kocaeli (Izmit) Earthquake of 17 August 1999
,”
Eng. Struct.
,
22
(
7
), pp.
727
745
.
42.
Bursi
,
O. S.
,
Di Filippo
,
R.
,
La Salandra
,
V.
,
Pedot
,
M.
, and
Reza
,
M. S.
,
2017
, “
Probabilistic Seismic Analysis of an LNG Subplant
,”
J. Loss Prev. Process Ind.
,
53
, pp.
45
60
.
43.
Bursi
,
O. E.
,
Paolacci
,
F.
,
Reza
,
M. S.
,
Alessandri
,
S.
, and
Tondini
,
N.
,
2016
, “
Seismic Assessment of Petrochemical Piping Systems Using a Performance-Based Approach
,”
ASME J. Pressure Vessel Technol.
,
138
(
3
), p.
031801
.
44.
Moat
,
A. M.
,
Morrison
,
J. T. A.
, and
Wong
,
S.
,
2000
, “
Performance of Industrial Facilities During 1999 Earthquakes: Implications for Risk Managers
,”
Global Change and Catastrophe Risk Management: Earthquake Risks in Europe, EuroConference
,
Laxenburg, Austria
,
July 6–9
, pp.
1
12
.
45.
Kazama
,
M.
, and
Noda
,
T.
,
2012
, “
Damage Statistics (Summary of the 2011 off the Pacific Coast of Tohoku Earthquake damage)
,”
Soils and Foundations
,
52
(
5
), pp.
780
792
.
46.
Dobashi
,
R.
,
2014
, “
Fire and Explosion Disasters Occurred Due to the Great East Japan Earthquake (March 11, 2011)
,”
J. Loss Prev. Process Ind.
,
31
, pp.
121
126
.
47.
NFPA 59A
,
2013
,
Standards for the Production, Storage and Handling of Liquefied Natural Gas (LNG)
,
National Fire Protection Association
,
Quincy, MA
.
48.
Nuclear Energy Agency
,
2008
, “
Differences in Approach Between Nuclear and Conventional Seismic Standards With Regard to Hazard Definition
,” CSNI Integrity and Ageing Working Group, Nuclear Energy Agency Committee on the Safety of Nuclear Installations, Organisation for Economic Co-operation and Development, Paris, France, Report No.
NEA/CSNI/R(2007)17
.https://www.oecd-nea.org/nsd/docs/2007/csni-r2007-17.pdf
49.
BS EN
,
2005
, “
Eurocode 8: Design of Structures for Earthquake Resistance–Part 1: General Rules, Seismic Actions and Rules for Buildings
,” British Standard EN, Brussels, Belgium, Standard No. EN 1998-1.
50.
Bursi
,
O. S.
,
Reza
,
S. M.
,
Abbiati
,
G.
, and
Paolacci
,
F.
,
2015
, “
Performance-Based Earthquake Evaluation of a Full-Scale Petrochemical Piping System
,”
J. Loss Prev. Process Ind.
,
33
, pp.
10
22
.
51.
Cornell
,
A. C.
,
1968
, “
Engineering Seismic Risk Analysis
,”
Bull. Seismol. Soc. Am.
,
58
(
5
), pp.
1583
1606
.
52.
McGuire
,
R. K.
,
1995
, “
Probabilistic Seismic Hazard Analysis and Design Earthquakes: Closing the Loop
,”
Bull. Seismol. Soc. Am.
,
85
(
5
), pp.
1275
1284
.
53.
Sousa
,
L.
,
Marques
,
M.
,
Silva
,
V.
, and
Varum
,
U.
,
2017
, “
Hazard Disaggregation and Record Selection for Fragility Analysis and Earthquake Loss Estimation
,”
Earthquake Spectra
,
33
(
2
), pp.
529
549
.
54.
Bazzurro
,
P.
, and
Cornell
,
C. A.
,
1999
, “
Disaggregation of Seismic Hazard
,”
Bull. Seismol. Soc. Am.
,
89
(
2
), pp.
501
520
.
55.
Rodriguez-Marek
,
A.
,
Rathje
,
E. M.
,
Bommer
,
J. J.
,
Scherbaum
,
F.
, and
Stafford
,
P. J.
,
2014
, “
Application of Single-Station Sigma and Site-Response Characterization in a Probabilistic Seismic-Hazard Analysis for a New Nuclear Site
,”
Bull. Seismol. Soc. Am.
,
104
(
4
), pp.
1601
1619
.
56.
Atkinson
,
G. M.
,
2006
, “
Single-Station Sigma
,”
Bull. Seismol. Soc. Am.
,
96
(
2
), pp.
446
455
.
57.
Choi
,
Y.
, and
Stewart
,
J. P.
,
2005
, “
Nonlinear Site Amplification as Function of 30 m Shear Wave Velocity
,”
Earthquake Spectra
,
21
(
1
), pp.
1
30
.
58.
Katsanos
,
E. I.
,
Sextos
,
A. G.
, and
Manolis
,
G. D.
,
2010
, “
Selection of Earthquake Ground Motion Records: A State-of-the-Art Review From a Structural Engineering Perspective
,”
Soil Dyn. Earthquake Eng.
,
30
(
4
), pp.
157
169
.
59.
Phan
,
H.
,
Paolacci
,
F.
, and
Alessandri
,
S.
,
2018
, “
Enhanced Seismic Fragility Analysis of Unanchored Steel Storage Tanks Accounting for Uncertain Modeling Parameters
,”
ASME. J. Pressure Vessel Technol.
(accepted).
60.
Baker
,
J. W.
, and
Allin Cornell
,
C.
,
2005
, “
A Vector-Valued Ground Motion Intensity Measure Consisting of Spectral Acceleration and Epsilon
,”
Earthquake Eng. Struct. Dyn.
,
34
(
10
), pp.
1193
1217
.
61.
Abrahamson
,
N. A.
,
1992
, “
Non-Stationary Spectral Matching
,”
Seismol. Res. Lett.
,
63
(
1
), p.
30
.
62.
Mukherjee
,
S.
, and
Gupta
,
V.
,
2002
, “
Wavelet-Based Generation of Spectrum-Compatible Time Histories
,”
Soil Dyn. Earthquake Eng.
,
22
(
9–12
), pp.
799
804
.
63.
Shome
,
N.
,
Cornell
,
C. A.
,
Bazzurro
,
P.
, and
Carballo
,
J. E.
,
1998
, “
Earthquakes, Records, and Nonlinear Responses
,”
Earthquake Spectra
,
14
(
3
), pp.
469
500
.
64.
Cimellaro
,
G. P.
, and
Sebastiano
,
M.
,
2015
, “
A Computer-Based Environment for Processing and Selection of Seismic Ground Motion Records: OPENSIGNAL
,”
Front. Built Environ.
,
1
, pp. 17–34.
65.
Baker
,
J. W.
, and
Allin Cornell
,
C.
,
2006
, “
Spectral Shape, Epsilon and Record Selection
,”
Earthquake Eng. Struct. Dyn.
,
35
(
9
), pp.
1077
1095
.
66.
Baker
,
J. W.
,
2011
, “
Conditional Mean Spectrum: Tool for Ground-Motion Selection
,”
J. Struct. Eng.
,
137
(
3
), pp.
322
331
.
67.
Lin
,
T.
,
Haselton
,
C. B.
, and
Baker
,
J. W.
,
2013
, “
Conditional Spectrum-Based Ground Motion Selection—Part I: Hazard Consistency for Risk-Based Assessments
,”
Earthquake Eng. Struct. Dyn.
,
42
(
12
), pp.
1847
1865
.
68.
Lin
,
T.
,
Haselton
,
C. B.
, and
Baker
,
J. W.
,
2013
, “
Conditional Spectrum-Based Ground Motion Selection—Part II: Intensity-Based Assessments and Evaluation of Alternative Target Spectra
,”
Earthquake Eng. Struct. Dyn.
,
42
(
12
), pp.
1867
1884
.
69.
Baker
,
J. W.
,
2007
, “
Probabilistic Structural Response Assessment Using Vector-Valued Intensity Measures
,”
Earthquake Eng. Struct. Dyn.
,
36
(
13
), pp.
1861
1883
.
70.
Bazzurro
,
P.
, and
Cornell
,
C. A.
,
2002
, “
Vector-Valued Probabilistic Seismic Hazard Analysis (VPSHA)
,”
Seventh U.S. National Conference on Earthquake Engineering
,
Boston, MA
,
July 21–25
, pp.
1
11
.https://www.researchgate.net/publication/248311776_Vector-valued_probabilistic_seismic_hazard_analysis_VPSHA
71.
Housner
,
G. W.
,
1963
, “
The Dynamic Behavior of Water Tanks
,”
Bull. Seismol. Soc. Am.
,
53
(2), pp.
381
387
.https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/53/2/381/116141/the-dynamic-behavior-of-water-tanks?redirectedFrom=fulltext
72.
Paolacci
,
F.
,
Phan
,
H. N.
,
Corritore
,
D.
,
Alessandri
,
S.
,
Bursi
,
O. S.
, and
Reza
,
M. S.
,
2015
, “
Seismic Fragility Analysis of Steel Storage Tanks
,”
Fifth ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering
,
Corfu, Greece
,
May 25–27
, pp.
2054
2065
.https://www.researchgate.net/publication/273656236_Seismic_Fragility_Analysis_of_Steel_Storage_Tanks
73.
Malhotra
,
P. K.
, and
Veletsos
,
A. S.
,
1994
, “
Uplifting Response of Unanchored Liquid-Storage Tanks
,”
J. Struct. Eng.
,
120
(
12
), pp.
3524
3546
.
74.
Phan
,
H. N.
,
Paolacci
,
F.
, and
P. Alessandri
,
S.
,
2016
, “
Fragility Analysis Methods for Steel Storage Tanks in Seismic Prone Areas
,”
ASME
Paper No. PVP2016-63102.
75.
Vathi
,
M.
, and
Karamanos
,
S. A.
,
2018
, “
A Simple and Efficient Model for Seismic Response and Low-Cycle Fatigue Assessment of Uplifting Liquid Storage Tanks
,”
J. Loss Prev. Process Ind.
,
53
, pp.
29
44
.
76.
Phan
,
H. N.
,
Paolacci
,
F.
, and
Mongabure
,
F.
,
2017
, “
Nonlinear Finite Element Analysis of Unanchored Steel Liquid Storage Tanks Subjected to Seismic Loadings
,”
ASME
Paper No. PVP2017-65814.
77.
DeGrassi
,
G.
,
Nie
,
J.
, and
Hofmayer
,
C.
,
2008
, “
Seismic Analysis of Large Scale Piping Systems for the JNES-NUPEC Ultimate Strength Piping Test Program
,” U.S. Nuclear Regulatory Commission, Washington, DC, Report No.
NUREG/CR-6983
.https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6983/
78.
Zeng
,
L.
,
Jansson
,
L. G.
, and
Venev
,
Y.
,
2014
, “
On Pipe Elbow Elements in ABAQUS and Benchmark Tests
,”
ASME
Paper No. PVP2014-28920.
79.
Otani
,
A.
,
Shibutani
,
T.
,
Morishita
,
M.
,
Nakamura
,
I.
, and
Shiratori
,
M.
,
2017
, “
Seismic Qualification of Piping System by Detailed Inelastic Response Analysis—Part 2: A Guideline for Piping Seismic Inelastic Response Analysis
,”
ASME
Paper No. PVP2017-65190.
80.
Azizpour
,
O.
, and
Hosseisni
,
M.
,
2009
, “
A Verification of ASCE Recommended Guidelines for Seismic Evaluation and Design of Combination Structures in Petrochemical Facilities
,”
J. Appl. Sci.
,
9
(
20
), pp.
3609
3628
.
81.
Paolacci
,
F.
,
Reza
,
M. S.
, and
Bursi
,
O. S.
,
2011
, “
Seismic Analysis and Component Design of Refinery Piping Systems
,”
COMPDYN-III, ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering
,
Corfu, Greece
,
May 26–28
, pp.
1
24
.https://www.researchgate.net/publication/232770195_SEISMIC_ANALYSIS_AND_COMPONENT_DESIGN_OF_REFINERY_PIPING_SYSTEMS
82.
Sone
,
A.
,
Yamauchi
,
T.
, and
Masuda
,
A.
,
2014
, “
A Load Combination Method for Seismic Design of Multi-Degree-of-Freedom Piping Systems With Friction Characteristics and Multiple Support Systems
,”
ASME
Paper No. PVP2014-28132.
83.
Vathi
,
M.
,
Karamanos
,
S. A.
,
Kapogiannis
,
I. A.
, and
Spiliopoulos
,
K. V.
,
2015
, “
Performance Criteria for Liquid Storage Tanks and Piping Systems Subjected to Seismic Loading
,”
ASME
Paper No. PVP2015-45700.
84.
Campedel
,
M.
,
Antonioni
,
G.
,
Cozzani
,
V.
,
Buratti
,
N.
,
Ferracuti
,
B.
, and
Savoia
,
M.
,
2008
, “
Quantitative Risk Assessment of Accidents Induced by Seismic Events in Industrial Sites
,”
Chemical Engineering Transaction
, Vol. 13, MIlan, Italy.
85.
Berahman
,
F.
, and
Behnamfar
,
F.
,
2007
, “
Seismic Fragility Curves for Un-Anchored on-Grade Steel Storage Tanks: Bayesian Approach
,”
J. Earthquake Eng.
,
11
(
2
), pp.
166
192
.
86.
ALA
,
2002
, “
Seismic Design and Retrofit of Piping Systems
,” American Lifelines Alliance, Federal Emergency Management Agency, Washington, DC.
87.
Buratti
,
N.
, and
Tavano
,
M.
,
2014
, “
Dynamic Buckling and Seismic Fragility of Anchored Steel Tanks by the Added Mass Method
,”
Earthquake Eng. Struct. Dyn.
,
43
(
1
), pp.
1
21
.
88.
Bakalis
,
K.
,
Vamvatsikos
,
D.
, and
Fragiadakis
,
M.
,
2015
, “
Seismic Fragility Assessment of Steel Liquid Storage Tanks
,”
ASME
Paper No. PVP2015-45370.
89.
Iervolino
,
I.
,
Fabbrocino
,
G.
, and
Manfredi
,
G.
,
2004
, “
Fragility of Standard Industrial Structures by a Response Surface Based Method
,”
J. Earthquake Eng.
,
8
(
6
), pp.
927
945
.
90.
Phan
,
H. N.
,
Paolacci
,
F.
,
Corritore
,
D.
,
Akbas
,
B.
,
Uckan
,
E.
, and
Shen
,
J. J.
,
2016
, “
Seismic Vulnerability Mitigation of Liquified Gas Tanks Using Concave Sliding Bearings
,”
Bull. Earthquake Eng.
,
14
(
11
), pp.
3283
3299
.
91.
Bu
,
S. J.
, and
Abhinav
,
G.
,
2015
, “
Seismic Fragility of Threaded Tee-Joint Connections in Piping System
,”
Int. J. Pressure Vessels Piping
,
132–133
, pp.
106
118
.
92.
Ehsan
,
S. F.
,
Bub
,
G. J.
,
Hyong
,
S. C.
, and
Nam
,
S. K.
,
2015
, “
Seismic Fragility Analysis of Seismically Isolated Nuclear Power Plants Piping System
,”
Nucl. Eng. Des.
,
284
, pp.
264
279
.
93.
Caprinozzi
,
S.
,
Ahmed
,
M.
,
Paolacci
,
F.
,
Bursi
,
O. S.
, and
La Salandra
,
V.
,
2017
, “
Univariate Fragility Models for Seismic Vulnerability Assessment of Refinery Piping Systems
,”
ASME
Paper No. PVP2017-65138.
94.
Phan
,
H. N.
, and
Paolacci
,
F.
,
2016
, “
Efficient Intensity Measures for Probabilistic Seismic Response Analysis of Anchored Above-Ground Liquid Steel Storage Tanks
,”
ASME
Paper No. PVP2016-63103.
95.
Wieschollek
,
M.
,
Hoffmeister
,
B.
, and
Feldmann
,
M.
,
2013
, “
Experimental and Numerical Investigations on Nozzle Reinforcements
,”
ASME
Paper No. PVP2013-97430.
96.
INDUSE 2 SAFETY
,
2013
, “
Component Fragility Evaluation and Seismic Safety Assessment of ‘Special Risk’ Petrochemical Plants Under Design Basis and Beyond Design Basis Accidents
,” RFCS, European Union, Luxembourg, accessed July 30, 2018, http://www.induse2safety.unitn.it/
97.
Vathi
,
M.
, and
Karamanos
,
S. A.
,
2015
, “
Simplified Model for the Seismic Performance of Unanchored Liquid Storage Tanks
,”
ASME
Paper No. PVP2015-45695.
98.
Fabbrocino
,
G.
,
Iervolino
,
I.
,
Orlando
,
F.
, and
Salzano
,
E.
,
2005
, “
Quantitative Risk Analysis of Oil Storage Facilities in Seismic Areas
,”
J. Hazard. Mater.
,
123
(
1–3
), pp.
61
69
.
99.
O'Rourke
,
M.
, and
So
,
P.
,
2000
, “
Seismic Fragility Curves for on‐Grade Steel Tanks
,”
Earthquake Spectra
,
16
(
4
), pp.
801
815
.
100.
Caputo
,
A. C.
,
2016
, “
A Model for Probabilistic Seismic Risk Assessment of Process Plants
,”
ASME
Paper No. PVP2016-63280.
101.
Alessandri
,
S.
,
Caputo
,
A. C.
,
Corritore
,
D.
,
Giannini
,
R.
,
Paolacci
,
F.
, and
Phan
,
H. N.
,
2018
, “
Probabilistic Risk Analysis of Process Plants Under Seismic Loading Based on Monte Carlo Simulations
,”
J. Loss Prev. Process Ind.
,
53
, pp.
136
148
.
102.
Uijt De Haag
,
P. A. M.
, and
Ale
,
B. J. M.
,
2005
, “
Guidelines for Quantitative Risk Assessment, Purple Book
,” Committee for the Prevention of Disasters, The Hague, Netherlands, Report No. CPR18E.
103.
Necci
,
A.
,
Cozzani
,
V.
,
Spadoni
,
G.
, and
Khan
,
F.
,
2015
, “
Assessment of Domino Effect: State of the Art and Research Needs
,”
Reliab. Eng. Syst. Saf.
,
143
, pp.
3
18
.
104.
Kadri
,
F.
, and
Chatelet
,
E.
,
2013
, “
Domino Effect Analysis and Assessment of Industrial Sites: A Review of Methodologies and Software Tools
,”
Int. J. Comput. Distrib. Syst.
,
2
(
III
), pp.
1
10
.https://hal.archives-ouvertes.fr/hal-01026495
105.
Reniers
,
G.
, and
Cozzani
,
V.
,
2013
,
Domino Effects in the Process Industries
,
Elsevier
,
Amsterdam, The Netherlands
, p.
84
.
106.
Salzano, S.
, and
Cozzani, V.
, 2005, “
The Analysis of Domino Accidents Triggered by Vapor Cloud Explosions
,”
Reliab. Eng. Syst. Saf.
,
90
, pp. 271–284.
107.
Cozzani
,
V.
,
Gubinelli
,
G.
, and
Salzano
,
E.
,
2006
, “
Escalation Thresholds in the Assessment of Domino Accidental Events
,”
J. Hazard. Mater.
,
129
(
1–3
), pp.
1
21
.
108.
Cozzani
,
V.
,
Tugnoli
,
A.
, and
Salzano
,
E.
,
2007
, “
Prevention of Domino Effect. From Active and Passive Strategies to Inherently Safer Design
,”
J. Hazard. Mater.
,
139
(
2
), pp.
209
219
.
109.
Cozzani
,
V.
,
Tugnoli
,
A.
, and
Salzano
,
E.
,
2009
, “
The Development of an Inherent Safety Approach to the Prevention of Domino Accidents
,”
Accid. Anal. Prev.
,
41
(
6
), pp.
1216
1227
.
110.
Bernechea
,
E. J.
,
Vilchez
,
J. A.
, and
Arnaldos
,
J.
,
2013
, “
A Model for Estimating the Impact of the Domino Effect on Accident Frequencies in Quantitative Risk Assessments of Storage Facilities
,”
Process Saf. Environ. Prot.
,
91
(
6
), pp.
423
437
.
111.
Khan
,
F.
, and
Abbasi
,
S. A.
,
1998
, “
DOMIFFECT: User Friendly Software for Domino Effect Analysis
,”
Environ. Modell. Software
,
13
(
2
), pp.
163
177
.
112.
Abdolhamodzadeh
,
B.
,
Abbasi
,
T.
,
Rashtchian
,
D.
, and
Abbasi
,
S. A.
,
2010
, “
A New Method for Assessing Domino Effect in Chemical Process Industry
,”
J. Hazard. Mater.
,
182
(
1–3
), pp.
416
426
.
113.
Khakzad
,
N.
,
2015
, “
Application of Dynamic Bayesian Network to Risk Analysis of Domino Effects in Chemical Infrastructures
,”
Reliab. Eng. Syst. Saf.
,
138
, pp.
263
272
.
114.
Khakzad
,
N.
,
Khan
,
F.
,
Amyotte
,
P.
, and
Cozzani
,
V.
,
2013
, “
Domino Effect Analysis Using Bayesian Networks
,”
Risk Anal.
,
33
(
2
), pp.
292
306
.
115.
Khakzad
,
N.
, and
Reniers
,
G.
,
2015
, “
Using Graph Theory to Analyze the Vulnerability of Process Plants in the Context of Cascading Effects
,”
Reliab. Eng. Syst. Saf.
,
143
, pp.
63
73
.
116.
Alileche
,
A.
,
Olivier
,
D.
,
Estel
,
L.
, and
Cozzani
,
V.
,
2017
, “
Analysis of Domino Effect in the Process Industry Using the Event Tree Method
,”
Saf. Sci.
,
97
, pp.
10
19
.
117.
Vilchez
,
J. A.
,
Espejo
,
V.
, and
Casal
,
J.
,
2011
, “
Generic Event Trees and Probabilities for the Release of Different Types of Hazardous Materials
,”
J. Loss Prev. Process Ind.
,
24
(
3
), pp.
281
287
.
118.
Pinkawa
,
M.
,
Hoffmeister
,
B.
, and
Feldmann
,
M.
,
2014
, “
Floor Response Spectra Considering Influence of Higher Modes and Dissipative Behaviour
,”
Seismic Design of Industrial Facilities
,
S.
Klinkel
,
C.
Butenweg
,
G.
Lin
, and
B.
Holtschoppen
, eds.,
Springer Vieweg
,
Wiesbaden, Germany
.
119.
LESSLOSS
,
2004
, “
Risk Mitigation for Earthquakes and Landslides
,” European Union, Luxembourg, Report No.
GOCE-CT-2003-505448
.https://cordis.europa.eu/project/rcn/74272_en.html
120.
STREST
,
2016
, “
Harmonized Approach to Stress Tests for Critical Infrastructures against Natural Hazards, STREST Reference Report: Report on Lessons Learned From Recent Catastrophic Events
,” G. Tsionis, A. Pinto, D. Giardini, and A. Mignan, eds., European Union, Luxembourg.
121.
XP-RESILIENCE
,
2016
, “
Extreme Loading Analysis of Petrochemical Plants and Design of Metamaterial-Based Shields for Enhanced Resilience
,” European Union, Luxembourg, accessed July 30, 2018, http://r.unitn.it/en/dicam/xp-resilience
122.
Kiremidjian
,
A.
,
Ortiz
,
K.
,
Nielsen
,
R.
, and
Safavi
,
B.
,
1985
, “
Seismic Risk to Major Industrial Facilities
,” Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, Report No.
72
.https://stacks.stanford.edu/file/druid:nx764pz3149/TR72_Kiremidjian.pdf
123.
Seligson
,
H. A.
,
Eguchi
,
R. T.
,
Tierney
,
K. J.
, and
Richmond
,
K.
,
1996
, “
Chemical Hazards, Mitigation and Preparedness in Areas of High Seismic Risk. A Methodology for Estimating the Risk of Post-Earthquake Hazardous Materials Release
,” National Centre for Earthquake Engineering Research, State University of New York, Buffalo, NY, Report No.
NCEER-96-0013
.https://nehrpsearch.nist.gov/static/files/NSF/PB97133565.pdf
124.
Busini
,
V.
,
Marzo
,
E.
,
Callioni
,
A.
, and
Rota
,
R.
,
2011
, “
Definition of a Short-Cut Methodology for Assessing Earthquake-Related Na-Tech Risk
,”
J. Hazard. Mater.
,
192
(
1
), pp.
329
339
.
125.
Marzo
,
E.
,
Busini
,
V.
, and
Rota
,
R.
,
2015
, “
Definition of a Short-Cut Methodology for Assessing the Vulnerability of a Territory in Natural-Technological Risk Estimation
,”
Reliab. Eng. Syst. Saf.
,
134
, pp.
92
97
.
126.
Sadeg-Azar
,
H.
, and
Hasenbank-Kriegbaum
,
T. D.
,
2014
, “
Probabilistic Seismic Analysis of Existing Industrial Facilities
,”
International Conference on Seismic Design of Industrial Facilities (SeDIF)
,
Aachen, Germany
,
Sept. 26–27
, pp.
101
112
.
127.
Caputo
,
A. C.
, and
Vigna
,
A.
,
2017
, “
Numerical Simulation of Seismic Risk and Loss Propagation Effects in Process Plants: An Oil Refinery Case Study
,”
ASME
Paper No. PVP2017-65465.
128.
Romeo
,
R. W.
,
2014
, “
Seismic Risk Analysis of a Oil-Gas Storage Plant
,”
Conference on Seismic Design of Industrial Facilities (SeDIF)
, Aachen, Germany, Sept. 26–27, ed., pp.
17
26
.
129.
Korkmaz
,
K. A.
,
Sari
,
A.
, and
Carhoglu
,
A. I.
,
2011
, “
Seismic Risk Assessment of Storage Tanks in Turkish Industrial Facilities
,”
J. Loss Prev. Process Ind.
,
24
(
4
), pp.
314
320
.
130.
Li
,
J.
,
Wang
,
Y.
,
Chen
,
H.
, and
Lin
,
L.
,
2014
, “
Risk Assessment Study of Fire Following an Earthquake: A Case Study of Petrochemical Enterprises in China
,”
Nat. Hazards Earth Syst. Sci.
,
14
(
4
), pp.
891
900
.
131.
Berger
,
J.
,
1994
, “
An Overview of Robust Bayesian Analysis
,”
Test
,
3
(
1
), pp.
5
124
.
132.
Kwag
,
S.
,
Oh
,
J.
,
Lee
,
J. M.
, and
Ryu
,
J.-S.
,
2017
, “
Bayesian-Based Seismic Margin Assessment Approach: Application to Research Reactor
,”
Earthquakes Struct.
,
12
(
6
), pp.
653
663
.https://www.researchgate.net/publication/318959377_Bayesian-based_seismic_margin_assessment_approach_Application_to_research_reactor
133.
Walley
,
P.
,
1991
,
Statistical Reasoning With Imprecise Probabilities
,
Chapman and Hall
,
New York
.
134.
Dempster
,
A.
,
1967
, “
Upper and Lower Probabilities Induced by a Multivalued Mapping
,”
Ann. Math. Stat.
,
38
(
2
), pp.
325
39
.
135.
Shafer
,
G.
,
1976
,
A Mathematical Theory of Evidence
,
Princeton University Press
, Princeton, NJ.
136.
Houtermans
,
M. J. M.
,
Apostolakis
,
G. E.
,
Brombacher
,
A. C.
, and
Karydas
,
D. M.
,
2002
, “
The Dynamic Flowgraph Method—Ology as a Safety Analysis Tool: Programmable Electronic System Design and Verification
,”
Saf. Sci.
,
40
(
9
), pp.
813
833
.
137.
Haji-Soltani
,
A.
, and
Pezeshk
,
S.
,
2017
, “
A Comparison of Different Approaches to Incorporate Site Effects in PSHA: A Case Study for a Liquefied Natural Gas Tank
,”
Bull. Seismol. Soc. Am
,
107
(
6
): pp.
2927
2947
.
138.
Haji-Soltani
,
A.
,
Pezeshk
,
S.
,
Malekmohammadi
,
M.
, and
Zandieh
,
A.
,
2017
, “
A Study of Vertical to Horizontal Ratio of Earthquake Components in the Gulf Coast Region
,”
Bull. Seismol. Soc. Am.
,
107
(
5
), pp.
2055
2066
.
139.
Caputo
,
A. C.
, and
Paolacci
,
F.
,
2017
, “
A Method to Estimate Process Plant Seismic Resilience
,”
ASME
Paper No. PVP2017-65464.
140.
Dinh
,
L. T. T.
,
Pasman
,
H.
,
Gao
,
X.
, and
Sam Mannan
,
M.
,
2012
, “
Resilience Engineering of Industrial Processes: Principles and Contributing Factors
,”
J. Loss Prev. Process Ind.
,
25
(
2
), pp.
233
241
.
141.
API/ASME
,
2007
, “
Fitness for Service
,” The American Society of Mechanical Engineers, New York, Standard No. API 579-1/ASME FFS-1.
You do not currently have access to this content.