Oil and gas pipelines are subjected to various types of deterioration and damage over long service years. These damaged pipes often experience loss of strength and structural integrity. Repair mechanisms have been developed in restoring the loading capacity of damaged pipelines, and composite repair systems have become popular over the past few years. The mechanical properties of the putty/grout are critical to their potential application as infill materials in structural repair. In this paper, the compression, tensile, and flexural behavior of four epoxy grouts was investigated through laboratory tests. The stiffness of the grouts for compression, tensile, and flexural was found to be 6 GPa to 18 GPa, 4 GPa to 15 GPa, and 4 GPa to 12 GPa, respectively. The ultimate strength for all grouts was found from 62 MPa to 87 MPa, 18 MPa to 38 MPa, and 34 MPa to 62 MPa under compression, tensile, and flexural tests, respectively. The behavior of all the tested grouts is discussed. A finite element (FE) model simulating a composite-repaired pipe was developed and compared with past studies. The FE results show a good correlation with experimental test with margin of error less than 10%. By replacing the infill properties in FE model to mimic the used of different infill material for the repair, it was found that about 4–8% increment in burst pressure can be achieved. This signifies that the role of infill material is not only limited to transferring the load, but it also has the potential to increase overall performance of composite-repaired pipe.

References

References
1.
Kishawy
,
H. A.
, and
Gabbar
,
H. A.
,
2010
, “
Review of Pipeline Integrity Management Practices
,”
Int. J. Pressure Vessels Piping
,
87
(
7
), pp.
373
380
.
2.
Li
,
Y.
,
Li
,
T. X.
,
Cai
,
G. W.
, and
Yang
,
L. H.
,
2013
, “
Influence of AC Interference to Corrosion of Q235 Carbon Steel
,”
Corros. Eng. Sci. Technol.
,
48
(
5
), pp.
322
326
.
3.
Tahir
,
S. N. F. M. M.
,
Noor
,
N. M.
,
Yahaya
,
N.
, and
Lim
,
K. S.
,
2015
, “
Relationship Between In-Situ Measurement of Soil Parameters and Metal Loss Volume of X70 Carbon Steel Coupon
,”
Asian J. Sci. Res.
,
8
(
2
), pp.
205
211
.https://www.researchgate.net/publication/275519463_Relationship_Between_in-situ_Measurement_of_Soil_Parameters_and_Metal_Loss_Volume_of_X70_Carbon_Steel_Coupon
4.
Tahir
,
S. N. F. M. M.
,
Yahaya
,
N.
,
Noor
,
N. M.
,
Lim
,
K. S.
, and
Rahman
,
A. A.
,
2015
, “
Underground Corrosion Model of Steel Pipelines Using In Situ Parameters of Soil
,”
ASME J. Pressure Vessel Technol.
,
137
(
5
), p.
051701
.
5.
Othman
,
S. R.
,
Yahaya
,
N.
,
Noor
,
N. M.
,
Lim
,
K. S.
,
Zardasti
,
L.
, and
Rashid
,
A. S. A.
,
2017
, “
Underground Modeling of External Metal Loss for Corroded Buried Pipeline
,”
ASME J. Pressure Vessel Technol.
,
139
(
3
), p.
031702
.
6.
CONCAWE
,
2013
, “
Performance of European Cross-Country Oil Pipelines: Statistical Summary of Reported Spillages in 2009 and Since 1971
,”
CONCAWE
, Brussels, Belgium, Report No. 3/11.
7.
Lim
,
K. S.
,
Azraai
,
S. N. A.
,
Yahaya
,
N.
, and
Noor
,
N. M.
,
2015
, “
Comparison of Mechanical Properties of Epoxy Grouts for Pipeline Repair
,”
Res. J. Appl. Sci. Eng. Technol.
,
11
(
12
), pp.
1430
1434
.https://www.researchgate.net/publication/292347114_Comparison_of_Mechanical_Properties_of_Epoxy_Grouts_for_Pipeline_Repair
8.
United State Department of Transport
,
2016
, “
Plains Pipeline, LP—Failure Investigation Report Santa Barbara County, California Crude Oil Release—May 19, 2015
,” U.S. Department of Transportation, Washington, DC.
9.
Hsu
,
J. W.
, and
Liu
,
F.
,
2014
, “
Taiwan Gas Blasts Likely Caused by Faulty Pipe
,”
Wall St. J.
(epub).http://online.wsj.com/articles/taiwan-gas-blasts-likely-caused-by-faulty-pipe-1406964902
10.
Shamsuddoha
,
M.
,
Islam
,
M. M.
,
Aravinthan
,
T.
,
Manalo
,
A.
, and
Lau
,
K. T.
,
2013
, “
Effectiveness of Using Fibre-Reinforced Polymer Composites for Underwater Steel Pipeline Repairs
,”
Compos. Struct.
,
100
, pp.
40
54
.
11.
Shamsuddoha
,
M.
,
Islam
,
M. M.
,
Aravinthan
,
T.
,
Manalo
,
A.
, and
Lau
,
K. T.
,
2013
, “
Characterization of Mechanical and Thermal Properties of Epoxy Grouts for Composite Repair of Steel Pipelines
,”
Mater. Des.
,
52
, pp.
315
327
.
12.
Azraai
,
S. N. A.
,
Lim
,
K. S.
,
Yahaya
,
N.
, and
Noor
,
N. M.
,
2015
, “
Infill Materials of Epoxy Grout for Pipeline Rehabilitation and Repair
,”
Malays. J. Civ. Eng.
,
27
(
1
), pp.
162
167
.https://www.researchgate.net/publication/275337805_INFILL_MATERIALS_OF_EPOXY_GROUT_FOR_PIPELINE_REHABILITATION_AND_REPAIR
13.
Lim
,
K. S.
,
Azraai
,
S. N. A.
,
Noor
,
N. M.
, and
Yahaya
,
N.
,
2016
, “
An Overview of Corroded Pipe Repair Techniques Using Composite Materials
,”
Int. J. Mater. Metall. Eng.
,
10
(
1
), pp.
19
25
.https://www.researchgate.net/publication/287994377_An_Overview_of_Corroded_Pipe_Repair_Techniques_Using_Composite_Materials
14.
da Costa Mattos
,
H. S.
,
Reis
,
J. M. L.
,
Paim
,
L. M.
,
da Silva
,
M. L.
,
Amorim
,
FC.
, and
Perrut
,
V.
,
2014
, “
Analysis of a Glass Fibre Reinforced Polyurethane Composite Repair System for Corroded Pipelines at Elevated Temperatures
,”
Compos. Struct.
,
114
, pp.
117
123
.
15.
Alexander
,
C.
,
2014
, “
The Role of Composite Repair Technology in Rehabilitating Piping and Pipelines
,”
ASME
Paper No. PVP2014-28257
.
16.
Chan
,
P. H.
,
Tshai
,
K. Y.
,
Johnson
,
M.
,
Choo
,
H. L.
,
Li
,
S.
, and
Zakaria
,
K.
,
2015
, “
Burst Strength of Carbon Fibre Reinforced Polyethylene Strip Pipeline Repair System—A Numerical and Experimental Approach
,”
J. Compos. Mater.
,
49
(
6
), pp.
749
756
.
17.
Khan
,
V. C.
,
Bagalanesan
,
G.
,
Pradhan
,
A. K.
, and
Sivakumar
,
M. S.
,
2017
, “
Nanofillers Reinforced Polymer Composites Wrap to Repair Corroded Steel Pipe Lines
,”
ASME J. Pressure Vessel Technol.
,
139
(
4
), p.
041411
.
18.
Kopple
,
M. F.
,
Lauterbach
,
S.
, and
Wagner
,
W.
,
2013
, “
Composite Repair of Through-Wall Defects in Pipework—Analytical and Numerical Models With Respect to ISO/TS24817
,”
Compos. Struct.
,
95
, pp.
173
178
.
19.
Ma
,
W. F.
,
Luo
,
J. H.
, and
Cai
,
K.
,
2011
, “
Discussion About Application of Composite Repair Technique in Pipeline Engineering
,”
Adv. Mater. Res.
,
311–313
, pp.
185
188
.
20.
Shamsuddoha
,
M.
,
Islam
,
M. M.
,
Aravinthan
,
T.
,
Manalo
,
A.
, and
Lau
,
K. T.
,
2012
, “
Fibre Composites for High Pressure Pipeline Repairs, In-Air and Subsea—An Overview
,”
Third Asia-Pacific Conference on FRP in Structures (APFIS 2012)
, Feb. 2–4, Paper No.
T1A05
.https://www.iifc.org/proceedings/APFIS_2012/pdf/T1A05.pdf
21.
Farrag, K.
,
2013
, “
Selection of Pipe Repair Methods
,” Final Report GTI -Project Number 21087, Gas Technology Institute, Illinois.
23.
Dev
,
R.
, and
Chaubey
,
D. S.
,
2016
, “
World's Oil Scenario—Falling Oil Prices Winners and Losers: A Study on Top Oil Producing and Consuming Countries
,”
Imp. J. Interdiscip. Res.
,
2
, pp.
378
383
.
24.
Haladuick
,
S.
, and
Dann
,
M. R.
,
2018
, “
Decision Making for Long-Term Pipeline System Repair or Replacement
,”
ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A
,
4
(
2
), p.
04018009
.
25.
Barkanov
,
E. N.
,
Lvov
,
G. I.
, and
Akishin
,
P.
,
2018
, “
Optimal Design of Composite Repair Systems of Transmission Pipelines
,”
Non-Destructive Testing and Repair of Pipelines
,
Barkanov
,
E. N.
,
Dumitrescu
,
A.
, and
Parinov
,
I. A
., eds.,
Springer
, Cham, Switzerland, pp.
387
398
.
26.
Dinita
,
A.
,
Lambrescu
,
I.
,
Chebakov
,
M. I.
, and
Dumitru
,
G.
,
2018
, “
Finite Element Stress Analysis of Pipelines With Advanced Composite Repair
,”
Non-Destructive Testing and Repair of Pipelines
,
Barkanov
,
E. N.
,
Dumitrescu
,
A.
, and
Parinov
,
I. A
., eds.,
Springer
, Cham, Switzerland, pp.
289
309
.
27.
ASME
,
2012
, “
ASME PCC-2 Repair of Pressure Equipment and Piping
,” American Society for Testing and Materials, New York.
28.
ISO
,
2006
, “
Petroleum, Petrochemical and Natural Gas Industries—Composite Repairs of Pipework—Qualification and Design, Installation, Testing and Inspection
,” International Organization for Standardization, Geneva, Switzerland, Switzerland, No. ISO/TS 24817.
29.
Duell
,
J. M.
,
Wilson
,
J. M.
, and
Kessler
,
M. R.
,
2008
, “
Analysis of a Carbon Composite Overwrap Pipeline Repair System
,”
Int. J. Pressure Vessels Piping
,
85
(
11
), pp.
782
788
.
30.
Duell
,
J. M.
,
2004
, “
Characterization and FEA of a Carbon Composite Overwrap Repair System
,” M.Sc. thesis, University of Tulsa, Tulsa, OK.
31.
Shouman
,
A.
, and
Taheri
,
F.
,
2011
, “
Compressive Strain Limits of Composite Repair Pipelines Under Combined Loading States
,”
Compos. Struct.
,
93
(
6
), pp.
1538
1548
.
32.
Chow
,
T. S.
,
1991
, “
Prediction of Stress-Strain Relationships in Polymer Composites
,”
Polymer
,
32
(
1
), pp.
29
33
.
33.
Chen
,
W.
,
Lu
,
F.
, and
Cheng
,
M.
,
2002
, “
Tension and Compression Tests of Two Polymers Under Quasi-Static and Dynamic Loading
,”
Polym. Test.
,
21
(
2
), pp.
113
121
.
34.
Ram
,
A.
,
1997
,
Fundamentals of Polymer Engineering
,
Springer Science+ Business Media
,
New York
.
35.
Suwanprateeb
,
J.
,
2000
, “
Calcium Carbonate Filled Polyethylene: Correlation of Hardness and Yield Stress
,”
Composites, Part A
,
31
(
4
), pp.
353
359
.
You do not currently have access to this content.