Autofrettage is a means of generating compressive residual stresses at the inner side of a thick-walled cylinder or hollow disk by causing nonhomogeneous plastic deformation of the material at the inner side. The presence of residual compressive stresses at the inner region of the cylinder/disk enhance the pressure withstanding capacity, fatigue life and the resistance to stress corrosion cracking of the component. Despite the hydraulic and swage autofrettage are the widely practiced processes in industries, there are certain disadvantages associated with these processes. In view of this, in the recent years, researchers have proposed new methods of achieving autofrettage. Rotational autofrettage is such a recently proposed autofrettage method for achieving the beneficial compressive residual stresses in the cylinders. In the present work, the rotational autofrettage is studied for a thick-walled hollow circular disk. A theoretical analysis of the residual stresses produced in the disk after unloading are obtained assuming plane stress condition, Tresca yield criterion and its associated flow rule. The analysis takes into account the effect of strain hardening during plastic deformation. Further, the effect of residual stresses in the typical SS304 and aluminum disk is studied by subjecting them into three different types of loads viz., internal pressure, radial temperature difference, and rotational speed individually. A three-dimensional (3D) finite element method (FEM) validation of the theoretical stresses during rotational autofrettage of a disk is also presented.

References

1.
Jacob
,
L.
,
1907
, “
La Résistance etL'équilibreElastique Des Tubes Frettés
,”
Mémoire de L'artillerie Navale
,
1
(
5
), pp.
43
155
. (in French)
2.
Davidson
,
T. E.
,
Barton
,
C. S.
,
Reiner
,
A. N.
, and
Kendall
,
D. P.
,
1962
, “
New Approach to the Autofrettage of High-Strength Cylinders
,”
Exp. Mech.
,
2
(
2
), pp.
33
40
.
3.
Mote
,
J. D.
,
Ching
,
L. K. W.
,
Knight
,
R. E.
,
Fay
,
R. J.
, and
Kaplan
,
M. A.
,
1971
, “
Explosive Autofrettage of Cannon Barrels
,” Army Materials and Mechanics Research Center, Watertown, MA, Report No.
AMMRC CR 70-25
. http://www.dtic.mil/dtic/tr/fulltext/u2/718867.pdf
4.
Kamal
,
S. M.
, and
Dixit
,
U. S.
,
2015
, “
Feasibility Study of Thermal Autofrettage of Thick-Walled Cylinders
,”
ASME J. Pressure Vessel Technol.
,
137
(
6
), p.
061207
.
5.
Turner
,
L. B.
,
1910
, “
The Stresses in a Thick Hollow Cylinder Subjected to Internal Pressure
,”
Trans. Cambridge Philos. Soc.
,
21
(
14
), pp.
377
396
.
6.
Thomas
,
D. G. B.
,
1953
, “
The Autofrettage of Thick Tubes With Free Ends
,”
J. Mech. Phys. Solids
,
1
(
2
), pp.
124
133
.
7.
Hill
,
R.
,
Lee
,
E. H.
, and
Tupper
,
S. J.
,
1957
, “
The Theory of Combined Plastic and Elastic Deformation With Particular Reference to a Thick Tube Under Internal Pressure
,”
Proc. R. Soc. London, Ser. A, Math. Phys. Sci.
,
191
(
1026
), pp.
278
303
. https://www.jstor.org/stable/98038
8.
Rees
,
D. W. A.
,
1990
, “
Autofrettage Theory and Fatigue Life of Open-Ended Cylinders
,”
J. Strain Anal. Eng. Des.
,
25
(
2
), pp.
109
121
.
9.
Gao
,
X. L.
,
1992
, “
An Exact Elasto-Plastic Solution for an Open-Ended Thick-Walled Cylinder of a Strain-Hardening Material
,”
Int. J. Pressure Vessel Piping
,
52
(
1
), pp.
129
44
.
10.
Parker
,
A. P.
,
Underwood
,
J. H.
, and
Kendall
,
D. P.
,
1999
, “
Bauschinger Effect Design Procedures for Autofrettaged Tubes Including Material Removal and Sachs' Method
,”
ASME J. Pressure Vessel Technol.
,
121
(
4
), pp.
430
437
.
11.
Huang
,
X. P.
, and
Moan
,
T.
,
2009
, “
Residual Stress in an Autofrettaged Tube Taking Bauschinger Effect as a Function of the Prior Plastic Strain
,”
ASME J. Pressure Vessel Technol.
,
131
(
2
), p.
021207
.
12.
Alegre
,
J. M.
,
Bravo
,
P.
, and
Preciado
,
M.
,
2006
, “
Design of an Autofrettaged High Pressure Vessel Considering the Bauschinger Effect
,”
Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng.
,
220
(
1
), pp.
7
16
.
13.
Jahed
,
H.
, and
Dubey
,
R. N.
,
1997
, “
An Axisymmetric Method of Elastic-Plastic Analysis Capable of Predicting Residual Stress Field
,”
ASME J. Pressure Vessel Technol.
,
119
(
3
), pp.
264
273
.
14.
Alexandrov
,
S.
,
Jeong
,
W.
, and
Chung
,
K.
,
2016
, “
Descriptions of Reversed Yielding in Internally Pressurized Tubes
,”
ASME J. Pressure Vessel Technol.
,
138
(
1
), p.
011204
.
15.
Majzoobi
,
G. H.
,
Farrahi
,
G. H.
, and
Mahmoudi
,
A. H.
,
2003
, “
A Finite Element Simulation and an Experimental Study of Autofrettage for Strain Hardened Thick-Walled Cylinders
,”
Mater. Sci. Eng. A
,
359
(
1–2
), pp.
326
331
.
16.
Kihiu
,
J. M.
,
Mutuli
,
S. M.
, and
Rading
,
G. O.
,
2003
, “
Stress Characterization of Autofrettaged Thick-Walled Cylinders
,”
Int. J. Mech. Eng. Educ.
,
31
(
4
), pp.
370
389
.
17.
Gibson
,
M. C.
,
Hameed
,
A.
,
Parker
,
A. P.
, and
Hetherington
,
J. G.
,
2006
, “
A Comparison of Methods for Predicting Residual Stresses in Strain-Hardening, Autofrettaged Thick Cylinders, Including the Bauschinger Effect
,”
ASME J. Pressure Vessel Technol.
,
128
(
2
), pp.
217
222
.
18.
Parker
,
A. P.
,
Gibson
,
M. C.
,
Hameed
,
A.
, and
Troiano
,
E.
,
2012
, “
Material Modeling for Autofrettage Stress Analysis Including “Single Effective Material
,”
ASME J. Pressure Vessel Technol.
,
134
(
4
), p.
041004
.
19.
O'Hara
,
G. P.
,
1992
, “
Analysis of the Swage Autofrettage Process
,” U. S. Army Armament Research Development and Engineering Center, Benét Laboratories, Watervliet, NY, Technical Report No. ARCCB-TR-92016.
20.
Bihamta
,
R.
,
Movahhedy
,
M. R.
, and
Mashreghi
,
A. R.
,
2007
, “
A Numerical Study of Swage Autofrettage of Thick-Walled Tubes
,”
Mater. Des.
,
28
(
3
), pp.
804
815
.
21.
Barbáchano
,
H.
,
Alegre
,
J. M.
, and
Cuesta
,
I. I.
,
2011
, “
FEM Simulation of the Swage Tube Forming (STF) in Cylinders Subjected to Internal Pressure
,”
An. Mec. Fract.
,
28
(
2
), pp.
481
486
.
22.
Dewangan
,
M. K.
, and
Panigrahi
,
S. K.
,
2015
, “
Residual Stress Analysis of Swage Autofrettaged Gun Barrel Via Finite Element Method
,”
J. Mech. Sci. Technol.
,
29
(
7
), pp.
2933
2938
.
23.
Chen
,
P. C. T.
,
1988
, “
A Simple Analysis of the Swage Autofrettage Process
,” U.S. Army Armament Research, Development and Engineering Center, Close Combat Armaments Center, Benét Laboratories, Watervliet, NY, Technical Report No. ARCCB-TR-88030.
24.
Rees
,
D. W. A.
,
2011
, “
A Theory for Swaging of Discs and Lugs
,”
Meccanica
,
46
(
6
), pp.
1213
1237
.
25.
Ren-rui
,
Z.
,
Chun-da
,
T.
, and
Guo-zhen
,
Z.
,
1999
, “
Elasto-Plastical Dynamic Analysis of Explosive Autofrettage
,”
Southwest Pet. Univ. (Natural Sci.)
,
21
(
4
), pp.
82
85
.http://en.cnki.com.cn/Article_en/CJFDTOTAL-XNSY199904022.htm
26.
Clark
,
G.
,
1984
, “
Fatigue Crack Growth Through Residual Stress Fields-Theoretical and Experimental Studies on Thick-Walled Cylinders
,”
Theor. Appl. Fract. Mech.
, 2(
2
), pp.
111
125
.
27.
Stacey
,
A.
,
MacGillivary
,
H. J.
,
Webster
,
G. A.
,
Webster
,
P. J.
, and
Ziebeck
,
K. R. A.
,
1985
, “
Measurement of Residual Stresses by Neutron Diffraction
,”
J. Strain Anal. Eng. Des.
,
20
(
2
), pp.
93
100
.
28.
George
,
D.
, and
Smith
,
D. J.
,
2000
, “
The Application of the Deep Hole Technique for Measuring Residual Stresses in an Autofrettaged Tube
,”
Am Soc Mech Eng Press Vessels Pip Div.
,
406
, pp. 25–31. http://jglobal.jst.go.jp/en/public/20090422/200902118118760088
29.
Venter
,
A. M.
,
de Swardt
,
R. R.
, and
Kyriacou
,
S.
,
2000
, “
Comparative Measurements on Autofrettaged Cylinders With Large Bauschinger Reverse Yielding Regions
,”
J. Strain Anal. Eng. Des.
,
35
(
6
), pp.
459
469
.
30.
Kamal
,
S. M.
, and
Dixit
,
U. S.
,
2015
, “
Feasibility Study of Thermal Autofrettage Process
,”
Advances in Material Forming and Joining
,
R. G.
Narayanan
, and
U. S.
Dixit
, eds.,
Springer
,
New Delhi
, pp.
81
107
.
31.
Kamal
,
S. M.
,
Borsaikia
,
A. C.
, and
Dixit
,
U. S.
,
2016
, “
Experimental Assessment of Residual Stresses Induced by the Thermal Autofrettage of Thick-Walled Cylinders
,”
J. Strain Anal. Eng. Des.
,
51
(
2
), pp.
144
160
.
32.
Zare
,
H. R.
, and
Darijani
,
H.
,
2016
, “
A Novel Autofrettage Method for Strengthening and Design of Thick-Walled Cylinders
,”
Mater. Des.
,
105
, pp.
366
374
.
33.
Shufen
,
R.
, and
Dixit
,
U. S.
,
2017
, “
A Finite Element Method Study of Combined Hydraulic and Thermal Autofrettage Process
,”
ASME J. Pressure Vessel Technol.
,
139
(
4
), p.
041204
.
34.
Chakrabarty
,
J.
,
2006
,
Theory of Plasticity
, 3rd ed.,
Butterworth-Heinemann
,
Burlington, MA
.
35.
Dixit
,
P. M.
, and
Dixit
,
U. S.
,
2008
,
Modeling of Metal Forming and Machining Processes: By Finite Element and Soft Computing Methods
,
Springer
,
London
.
36.
Gerald
,
C. F.
, and
Wheatley
,
P. O.
,
1994
,
Applied Numerical Analysis
, 5th ed.,
Addison-Wesley
, Boston, MA.
You do not currently have access to this content.