Composite pipes are currently being used in a multitude of applications varying from civil to oil and gas applications. Pipes are generally connected together by means of pipe elbows that in turn are subjected to bending moment and pressure loading. This study looks into the effect of combined loading on the first ply and ultimate failure load of pipe elbows. The influence of pressure loading followed by a bending moment versus first applying bending moment followed by subsequent pressure loading, on the ultimate catastrophic failure load, is investigated through numerical models. The combined bending moment and pressure load ramping is also studied. Design by analysis finite element damage mechanics numerical methods are applied to investigate post first ply failure (FPF) and stress redistribution. The study shows that different loading combinations can give rise to different damage mechanisms and ultimately failure loads. A safe design load envelope for different fiber-reinforced pipe elbows based on FPF and ultimate catastrophic load is identified and discussed.

References

References
1.
Lui
,
Y.
,
Shao
,
X.
,
Yang
,
H.
,
Zhao
,
Y.
, and
Qu
,
L.
,
2009
, “
Compound Pipes in Oil and Gas Engineering
,”
International Conference on Pipelines and Trenchless Technology (ICPTT)
, Shanghai, China, Oct. 18–21, pp.
1863
1873
.
2.
Fisher
,
E. H.
, and
Gibson
,
A. G.
,
1998
, “
Continuous Fiber Reinforced Thermoplastic Pipes for Transport and Distribution of Fluids for the Oil and Gas Industries
,”
Plast. Rubber Compos.: Process. Appl.
,
27
(
10
), pp.
447
451
.http://apps.webofknowledge.com/CitedFullRecord.do?product=WOS&colName=WOS&SID=C1l5jmXweywSPXzWbkk&search_mode=CitedFullRecord&isickref=WOS:000081402000002
3.
Frost
,
S. R.
, and
Cervenka
,
A.
,
1994
, “
Glass Fiber-Reinforced Epoxy Matric Filament-Wound Pipes for Use in the Oil Industry
,”
Compos. Manuf.
,
5
(
2
), pp.
73
81
.
4.
Shen
,
F. C.
,
1995
, “
A Filament Wound Structure Technology Overview
,”
Mater. Chem. Phys.
,
42
(
2
), pp.
96
100
.
5.
Soden
,
P. D.
,
Kitching
,
R.
, and
Tse
,
P. C.
,
1989
, “
Experimental Failure Stresses for ±55 °Filament Wound Glass Fiber Reinforced Plastic Tubes Under Biaxial Loads
,”
Composites
,
20
(
2
), pp.
125
135
.
6.
Mistry
,
J.
,
Gibson
,
A. G.
, and
Wu
,
Y. S.
,
1992
, “
Failure of Composite Cylinders Under Combined External Pressure and Axial Loading
,”
Compos. Struct.
,
22
(
4
), pp.
193
200
.
7.
Dong
,
L.
, and
Mistry
,
J.
,
1997
, “
An Experimental Study of the Failure of Composite Cylinders Subject to Combined External Pressure and Axial Compression
,”
Compos. Struct.
,
40
(
1
), pp.
81
94
.
8.
Bai
,
J.
,
Seeleuthner
,
P.
, and
Bompard
,
P.
,
1997
, “
Mechanical Behaviour of ±55 °Filament-Wound Glass-Fiber/Epoxy–Resin Tubes— I: Microstructural Analyses, Mechanical Behavior and Damage Mechanisms of Composite Tubes Under Pure Tensile Loading, Pure Internal Pressure and Combined Loading
,”
Compos. Sci. Technol.
,
57
(
2
), pp.
141
153
.
9.
Ellul
,
B.
,
Camilleri
,
D.
,
Grech
,
J.
, and
Muscat
,
M.
,
2016
, “
Filament Wound Composite Pressure Vessels and Pipes Subject to an Internal Pressure: An Experimental and Material Characterization Study
,”
ASME J. Pressure Vessel Technol.
,
138
(
6
), p.
060907
.
10.
Guz
,
I. A.
,
Menshykova
,
M.
, and
Paik
,
J. K.
,
2015
, “
Thick-Walled Composite Tubes for Offshore Applications: An Example of Stress and Failure Analysis for Filament-Wound Multi-Layered Pipes
,”
Ships Offshore Struct.
,
12
(
3
), pp.
304
322
.
11.
Ellul
,
B.
, and
Camilleri
,
D.
, 2018, “
The Applicability and Implementation of the Discrete Big Bang-Big Crunch Optimisation Technique for Discontinuous Objective Function in Multi-Material Laminated Composite Pressure Vessels
,”
Int. J. Pressure Vessels Piping
(in press)
12.
Bakaiyan
,
H.
,
Hosseini
,
H.
, and
Ameri
,
E.
,
2009
, “
Analysis of Multi-Layered Filament Wound Composite Pipes Under Combined Internal Pressure and Thermomechanical Loading With Thermal Variations
,”
Compos. Struct.
,
88
(
4
), pp.
532
541
.
13.
Ansari
,
R.
,
Alisafaei
,
F.
, and
Ghaedi
,
P.
,
2010
, “
Dynamic Analysis of Multi-Layered Filament Wound Composite Pipes Subjected to Cyclic Internal Pressure and Cyclic Temperature
,”
Compos. Struct.
,
92
(
5
), pp.
1100
1109
.
14.
Natsuki
,
T.
,
Takayamagi
,
H.
,
Tsuda
,
H.
, and
Kemmochi
,
K.
,
2003
, “
Prediction of Bending Strength for Filament-Wound Composite Pipes
,”
J. Reinf. Plast. Compos.
,
22
(
8
), pp.
695
710
.
15.
Kuang
,
Y.
,
Morozov
,
E. V.
,
Ashraf
,
M. A.
, and
Shankar
,
K.
,
2015
, “
Numerical Analysis of the Mechanical Behaviour of Reinforced Thermoplastic Pipes Under Combined External Pressure and Bending
,”
Compos. Struct.
,
131
, pp.
453
461
.
16.
Kitching
,
R.
,
Myler
,
P.
, and
Tan
,
A. L.
,
1988
, “
GRP Pipe Bends Subjected to out-of-Plane Flexure With and Without Pressure
,”
J. Strain Anal. Eng. Des.
,
23
(
4
), pp.
187
199
.
17.
Kochekseraii
,
S. B.
, and
Robinson
,
M.
,
2004
, “
Flexural Behaviour of a Polyvinyl Chloride-Lined Glass-Reinforced Plastic Composite Multi-Mitred Pipe Bend Subjected to Combined Loads: A Comparative Finite Element Analysis and Experimental Case Study
,”
J. Strain Anal.
,
39
(
2
), pp.
137
146
.
18.
EU
,
2014
, “
On the Harmonisation of the Laws of the Member States Relating to the Making Available on the Market of Pressure Equipment
,” EU Directive, 2014/68/EU, 15 May 2014.
19.
European Committee for Standardization
,
2010
, “
GRP Tanks and Vessels for Use above Ground: Design and Workmanship
,”
European Committee for Standardization
, Brussels, Belgium, Standard No. EN 13121-3:2008+A1:2010.
20.
European Committee for Standardization
,
2005
, “
Filament-Wound FRP Pressure Vessels: Material, Design, Manufacturing and Testing
,”
European Committee for Standardization
, Brussels, Belgium, Standard No. EN 13923:2005.
21.
Hossain
,
R.
,
Carey
,
J.
, and
Mertiny
,
P.
,
2013
, “
Framework for a Combined Netting Analysis and Tsai-Wu Based Design Approach for Braided and Filament-Wound Composites
,”
ASME J. Pressure Vessel Technol.
,
135
(
3
), p.
031204
.
22.
Tsai
,
S. W.
, and
Wu
,
E. M.
,
1971
, “
A General Theory of Strength for Anisotropic Materials
,”
J. Comput. Mater.
,
5
(
1
), pp.
58
80
.
23.
Camilleri
,
D.
,
Ellul
,
B.
, and
Muscat
,
M.
,
2014
, “
Design-by-Analysis Methods for Asymmetric or Unbalanced Cylindrical Composite Pressure Vessels
,”
ASME
Paper No. PVP2014-28130.
24.
Xia
,
M.
,
Takayanagi
,
H.
, and
Kemmochi
,
K.
,
2001
, “
Analysis of Multi-Layered Filament-Wound Composite Pipes Under Internal Pressure
,”
Compos. Struct.
,
53
(
4
), pp.
483
491
.
25.
Xia
,
M.
,
Takayanagi
,
H.
, and
Kemmochi
,
K.
,
2002
, “
Bending Behaviour of Filament-Would Fiber-Reinforced Sandwich Pipes
,”
Compos. Struct.
,
56
(
2
), pp.
201
210
.
26.
Xia
,
M.
,
Kemmochi
,
K.
, and
Takayanagi
,
H.
,
2001
, “
Analysis of Filament-Wound Fiber-Reinforced Sandwich Pipe Under Combined Internal Pressure and Thermomechanical Loading
,”
Compos. Struct.
,
51
(
3
), pp.
273
283
.
27.
Garnich
,
M. R.
, and
Akula
,
V. M. K.
,
2008
, “
Review of Degradation Models for Progressive Failure Analysis of Fiber Reinforced Polymer Composites
,”
ASME Appl. Mech. Rev.
,
62
(
1
), p.
010801
.
28.
Murugesan
,
N.
, and
Rajamohan
,
V.
,
2017
, “
Prediction of Progressive Ply Failure of Laminated Composite Structures: A Review
,”
Arch. Comput. Methods Eng.
,
24
(
4
), pp.
841
853
.
29.
Chen
,
N.-Z.
, and
Guedes Soares
,
C.
,
2011
, “
Ultimate Strength and Reliability of Composite Material Structures
,”
Marine Technology and Engineering
,
Taylor & Francis Group
,
London
, pp.
817
840
.
30.
Tay
,
T. E.
,
Liu
,
G.
,
Tan
,
V. B. C.
,
Sun
,
X. S.
, and
Pham
,
D. C.
,
2008
, “
Progressive Failure Analysis of Composites
,”
J. Compos. Mater.
,
42
(
18
), pp.
1921
1966
.
31.
Fan
,
X. L.
,
Sun
,
Q.
, and
Kikuchi
,
M.
,
2010
, “
Review of Damage Tolerant Analysis of Laminated Composites
,”
J. Solid Mech.
,
2
(
3
), pp.
275
289
.http://jsm.iau-arak.ac.ir/article_514385.html
32.
Padhi
,
G. S.
,
Shenoi
,
R. A.
,
Moy
,
S. S. J.
, and
Hawkins
,
G. L.
,
1998
, “
Progressive Failure and Ultimate Collapse of Laminated Composite Plates in Bending
,”
Compos. Struct.
,
40
(
3–4
), pp.
277
291
.
33.
Ellul
,
B.
,
Camilleri
,
D.
, and
Betts
,
J. C.
,
2014
, “
A Progressive Failure Analysis Applied to Fiber-Reinforced Composite Plates Subject to out-of-Plane Bending
,”
Mech. Compos. Mater.
,
49
(
6
), pp.
605
620
.
34.
Hashin
,
Z.
,
1980
, “
Failure Criteria for Unidirectional Fiber Composites
,”
ASME J. Appl. Mech.
,
47
(
2
), pp.
329
334
.
35.
Ellul
,
B.
, and
Camilleri
,
D.
,
2015
, “
The Influence of Manufacturing Variances on the Progressive Failure of Filament Wound Cylindrical Pressure Vessels
,”
Compos. Struct.
,
133
, pp.
853
862
.
36.
Scott Bader Company Limited, 2013, “
Crystic BP 90-78PA & BP 90-79PA
,” Technical Data Sheet Crystic BP 90-78PA & BP 90-79PA - TDS, Scott Bader Company Limited, Northamptonshire, UK.
37.
Shemirani
,
F. M.
,
Adeeb
,
S.
,
Cheng
,
J. J. R.
, and
Martens
,
M.
,
2014
, “
Investigation of the Influence of the Bourdon Effect on the Stress and Ovalization in Elbows
,”
ASME
Paper No. IPC2014-33651.
You do not currently have access to this content.