In pressure vessel and pipe inspection, ultrasonic nondestructive evaluation plays a pivotal role in both in-situ and laboratory examinations. Scanning acoustic microscopy (SAM) has been a well-recognized laboratory tool for both visualization and quantitative evaluation of pressure vessel and piping materials at the microscale since its invention in 1974. While there have been multiple advances in SAM over the past four decades, some issues still remain to be addressed. First, the measurement speed is limited by the mechanical movement of the acoustic lens and the sample stage. Second, a single-element transducer with an acoustic lens forms a predetermined beam pattern for a fixed focal length and incident angle, thereby limiting control of the inspection beam. Here, we propose to develop a phased-array probe as an alternative to overcome these issues. Preliminary studies to design a practical high-frequency phased-array acoustic microscope probe were explored. A linear phased-array, comprising 32 elements and operating at 5 MHz, was modeled using PZFlex, a finite element method software. This phased-array system was characterized in terms of electrical input impedance response, pulse-echo and impulse response, surface displacement profiles, mode shapes, and beam profiles. Details of the construction of the model and the results are presented in this paper. Development of a phased-array acoustic microscope probe will significantly enhance scanning acoustic microscopy techniques for detecting surface and subsurface defects and microstructural changes in laboratory samples of pressure vessel and piping materials.

References

References
1.
Weglein
,
R. D.
,
1979
, “
A Model for Predicting Acoustic Material Signatures
,”
Appl. Phys. Lett.
,
34
(
3
), pp.
179
181
.
2.
Parmon
,
W.
, and
Bertoni
,
H. L.
,
1979
, “
Ray Interpretation of the Material Signature in the Acoustic Microscope
,”
Electron. Lett.
,
15
(
21
), pp.
684
686
.https://ieeexplore.ieee.org/document/4256104/
3.
Liang
,
K. K.
,
Kino
,
G. S.
, and
Khuri-Yakub
,
B. T.
,
1985
, “
Material Characterization by the Inversion of V (z)
,”
IEEE Trans. Sonics Ultrasonics
,
32
(
2
), pp.
213
224
.
4.
Wilson
,
R. G.
, and
Weglein
,
R. D.
,
1984
, “
Acoustic Microscopy of Materials and Surface Layers
,”
J. Appl. Phys.
,
55
(
9
), pp.
3261
3275
.
5.
Endo
,
T.
,
Abe
,
C.
,
Sakai
,
M.
, and
Ohno
,
M.
,
1993
, “
Measurement of Dispersion Relation in Acoustic Velocities for the Thin Film on an Anisotropic Substrate Using Acoustic Microscope
,”
IEEE Ultrasonics Symposium
, Baltimore, MD, Oct. 31–Nov. 3, p.
45
.
6.
Zhang
,
F.
,
Krishnaswamy
,
S.
,
Fei
,
D.
,
Rebinsky
,
D. A.
, and
Feng
,
B.
,
2006
, “
Ultrasonic Characterization of Mechanical Properties of Cr-and W-Doped Diamond-like Carbon Hard Coatings
,”
Thin Solid Films
,
503
(
1–2
), pp.
250
258
.
7.
Kundu
,
T.
,
1992
, “
Inversion of Acoustic Material Signature of Layered Solids
,”
J. Acoust. Soc. Am.
,
91
(
2
), pp.
591
600
.
8.
Kundu
,
T.
,
Mal
,
A. K.
, and
Weglein
,
R. D.
,
1985
, “
Calculation of the Acoustic Material Signature of a Layered Solid
,”
J. Acoust. Soc. Am.
,
77
(
2
), pp.
353
361
.
9.
Kim
,
J. N.
,
Tutwiler
,
R.
,
Kwak
,
D. R.
,
Park
,
I.
, and
Miyasaka
,
C.
,
2013
, “
Multilayer Transfer Matrix Characterization of Complex Materials With Scanning Acoustic Microscopy
,”
Proc. SPIE
,
8694
, p.
869410
.
10.
Ohno
,
M.
,
Miyasaka
,
C.
, and
Tittmann
,
B. R.
,
2001
, “
Pupil Function Splitting Method in Calculating Acoustic Microscopic Signals for Elastic Discontinuities
,”
Wave Motion
,
33
(
4
), pp.
309
320
.
11.
Li
,
X.
,
Kim
,
J. N.
,
Todd
,
J. A.
,
Tutwiler
,
R. L.
, and
Park
,
I. K.
,
2015
, “
Characterization of Complex Materials With Elastic Discontinuities Using Scanning Acoustic Microscopy
,”
Proc. SPIE
,
9437
, p.
943703
.
12.
Bumrerraj
,
S.
, and
Katz
,
J. L.
,
2001
, “
Scanning Acoustic Microscopy Study of Human Cortical and Trabecular Bone
,”
Ann. Biomed. Eng.
,
29
(
12
), pp.
1034
1042
.
13.
Litniewski
,
J.
,
2005
, “
Determination of the Elasticity Coefficient for a Single Trabecula of a Cancellous Bone: Scanning Acoustic Microscopy Approach
,”
Ultrasound Med. Biol.
,
31
(
10
), pp.
1361
1366
.
14.
Tittmann
,
B. R.
,
Miyasaka
,
C.
,
Mastro
,
A. M.
, and
Mercer
,
R. R.
,
2007
, “
Study of Cellular Adhesion With Scanning Acoustic Microscopy
,”
IEEE Trans. Ultrasonics, Ferroelectr., Freq. Control
,
54
(
8
), pp.
1502
1513
.
15.
Tittmann
,
B. R.
,
Miyasaka
,
C.
,
Maeva
,
E.
, and
Shum
,
D.
,
2013
, “
Fine Mapping of Tissue Properties on Excised Samples of Melanoma and Skin Without the Need for Histological Staining
,”
IEEE Trans. Ultrasonics, Ferroelectr., Freq. Control
,
60
(
2
), pp.
320
331
.
16.
Kushibiki
,
J.
,
Ohkubo
,
A.
, and
Chubachi
,
N.
,
1981
, “
Anisotropy Detection in Sapphire by Acoustic Microscope Using Line-Focus Beam
,”
Electron. Lett.
,
17
(
15
), pp.
534
536
.
17.
Yamada
,
K.
, and
Shimizu
,
H.
,
1991
, “
Planar-Structure Focusing Lens for Acoustic Microscope
,”
J. Acoust. Soc. Jpn. (E)
,
12
(
3
), pp.
123
129
.
18.
Khuri-Yakub
,
B. T.
, and
Chou
,
C. H.
,
1986
, “
Acoustic Microscope Lenses With Shear Wave Transducers
,”
IEEE Ultrasonics Symposium
, Williamsburg, VA, Nov. 17–19, pp.
741
744
.
19.
Davids
,
D. A.
,
Wu
,
P. Y.
, and
Chizhik
,
D.
,
1989
, “
Restricted Aperture Acoustic Microscope Lens for Rayleigh Wave Imaging
,”
Appl. Phys. Lett.
,
54
(
17
), pp.
1639
1641
.
20.
Atalar
,
A.
, and
Koymen
,
H.
,
1989
, “
A High Efficiency Lamb Wave Lens for Subsurface Imaging
,” IEEE
Ultrasonics Symposium
, Montreal, QC, Canada, Oct. 3–6, pp.
813
816
.
21.
Routh
,
H. F.
,
Sivers
,
E. A.
,
Bertoni
,
H. L.
,
Khuri-Yakub
,
B. T.
, and
Waters
,
D. D.
,
1990
, “
1 GHz Differential Phase Acoustic Lens Design for Surface and Subsurface Applications
,”
IEEE Ultrasonics Symposium
, Honolulu, HI, Dec. 4–7, pp.
931
935
.
22.
Miyasaka
,
C.
,
Tittmann
,
B. R.
, and
Ohno
,
M.
,
1999
, “
Practical Shear Wave Lens Design for Improved Resolution With Acoustic Microscope
,”
J. Res. Nondestr. Eval.
,
11
(
2
), pp.
97
116
.
23.
Shung
,
K. K.
,
Cannata
,
J. M.
, and
Zhou
,
Q. F.
,
2007
, “
Piezoelectric Materials for High Frequency Medical Imaging Applications: A Review
,”
J. Electroceram.
,
19
(
1
), pp.
141
147
.
24.
Wildes
,
D. G.
,
Chiao
,
R. Y.
,
Daft
,
C. M.
,
Rigby
,
K. W.
,
Smith
,
L. S.
, and
Thomenius
,
K. E.
,
1997
, “
Elevation Performance of 1.25 D and 1.5 D Transducer Arrays
,”
IEEE Trans. Ultrasonics, Ferroelectr., Freq. Control
,
44
(
5
), pp.
1027
1037
.
25.
Mondal
,
S. C.
,
Wilcox
,
P. D.
, and
Drinkwater
,
B. W.
,
2005
, “
Design of Two-Dimensional Ultrasonic Phased Array Transducers
,”
ASME J. Pressure Vessel Technol.
,
127
(
3
), pp.
336
344
.
26.
Mina
,
I. G.
,
Kim
,
H.
,
Kim
,
I.
,
Park
,
S. K.
,
Choi
,
K.
,
Jackson
,
T. N.
,
Tutwiler
,
R. L.
, and
Trolier-McKinstry
,
S.
,
2007
, “
High Frequency Piezoelectric MEMS Ultrasound Transducers
,”
IEEE Trans. Ultrasonics, Ferroelectr., Freq. Control
,
54
(
12
), pp.
2422
2430
.
27.
Griggio
,
F.
,
Demore
,
C. E.
,
Kim
,
H.
,
Gigliotti
,
J.
,
Qiu
,
Y.
,
Jackson
,
T. N.
,
Choi
,
K.
,
Tutwiler
,
R. L.
,
Cochran
,
S.
, and
Trolier-McKinstry
,
S.
,
2012
, “
Micromachined Diaphragm Transducers for Miniaturised Ultrasound Arrays
,”
IEEE International Ultrasonics Symposium
(
IUS
), Dresden, Germany, Oct. 7–10, pp.
1
4
.
28.
Wojcik
,
G. L.
,
Vaughan
,
D. K.
,
Abboud
,
N.
, and
Mould
,
J.
,
1993
, “
Electromechanical Modeling Using Explicit Time-Domain Finite Elements
,”
Ultrasonics Symposium
, Baltimore, MD, Oct. 31–Nov. 3, pp.
1107
1112
.
29.
Weidlinger Associates
,
2014
, “
PZFlex User Manual Version 2014
,” PZFlex, LLC., Cupertino, CA.
30.
McKeighen
,
R. E.
,
1998
, “
Design Guidelines for Medical Ultrasonic Arrays
,”
Proc. SPIE
,
3341
, pp.
2
18
.
31.
Krimholtz
,
R.
,
Leedom
,
D. A.
, and
Matthaei
,
G. L.
,
1970
, “
New Equivalent Circuits for Elementary Piezoelectric Transducers
,”
Electron. Lett.
,
6
(
13
), pp.
398
399
.
32.
O'Leary
,
R. L.
,
Hayward
,
G.
,
Smillie
,
G.
, and
Parr
,
A.
,
2005
, “
CUE Materials Database, Version 1.2
,” The Centre for Ultrasonic Engineering University of Strathclyde, Glasgow, Scotland.
33.
ONDA Corporation, 2003, “Acoustic Properties of Longitudinal Solids,” ONDA Corporation, Sunnyvale, CA, http://www.ondacorp.com/tecref_acoustictable.shtml
34.
Abboud
,
N.
,
Wojcik
,
G.
,
Vaughan
,
D.
,
Mould
,
J.
,
Powell
,
D.
, and
Nikodym
,
L.
,
1998
, “
Finite Element Modeling for Ultrasonic Transducers
,”
Proc. SPIE
3341
, pp.
19
42
.
35.
Sandler
,
I. S.
,
1998
, “
A New Computational Procedure for Wave Propagation Problems and a New Procedure for Non-Reflecting Boundaries
,”
Comput. Methods Appl. Mech. Eng.
,
164
(
1–2
), pp.
223
233
.
You do not currently have access to this content.