The structural integrity of underground pipelines are subject to a major threat from permanent ground displacements when they cross active tectonic (e.g., strike-slip) faults, because of large strains potentially induced in pipes, leading to pipe buckling and possible rupture. In this paper, the buckling behavior of X80 pipe is studied numerically with an emphasis on the effects of steel stress–strain characteristics. A rigorous mechanics-based nonlinear finite element (FE) model of a buried X80 pipe crossing a strike-slip fault is developed using shell elements and nonlinear springs for the pipe and soil resistance, respectively. The pipe steel material in the FE model is characterized by a novel and versatile stress–strain relationship, which was established to successfully capture both the round-house (RH) type and the yield-plateau (YP) type stress–strain behaviors. This allows investigating the significant effects of the stress–strain characteristics, as observed in this paper, on the buckling behavior of pressurized and nonpressurized pipes.

References

References
1.
Newmark
,
N. M.
, and
Hall
,
W. J.
,
1975
, “
Pipeline Design to Resist Large Fault Displacement
,”
U.S. National Conference on Earthquake Engineering
, Ann Arbor, MI, June 18–20, pp.
416
425
.
2.
Kennedy
,
R. P.
,
Chow
,
A. W.
, and
Williamson
,
R. A.
,
1977
, “
Fault Movement Effects on Buried Oil Pipeline
,”
Transp. Eng. J.
,
103
(
5
), pp.
617
633
.http://cedb.asce.org/CEDBsearch/record.jsp?dockey=0007585
3.
Wang
,
R. L.
, and
Yeh
,
Y. H.
,
1985
, “
A Refined Seismic Analysis and Design of Buried Pipeline for Fault Movement
,”
Earthquake Eng. Struct. Dyn.
,
13
(
1
), pp.
75
96
.
4.
Karamitros
,
D. K.
,
Bouckovalas
,
G. D.
, and
Kouretzis
,
G. P.
,
2007
, “
Stress Analysis of Buried Steel Pipelines at Strike-Slip Fault Crossings
,”
Soil Dyn. Earthquake Eng.
,
27
(
3
), pp.
200
211
.
5.
Trifonov
,
O. V.
, and
Cherniy
,
V. P.
,
2010
, “
A Semi-Analytical Approach to a Nonlinear Stress-Strain Analysis of Buried Steel Pipelines Crossing Active Faults
,”
Soil Dyn. Earthquake Eng.
,
30
(
11
), pp.
1298
1308
.
6.
Liu
,
X. B.
,
Zhang
,
H.
,
Han
,
Y. S.
,
Xia
,
M. Y.
, and
Zheng
,
W.
,
2016
, “
A Semi-Empirical Model for Peak Strain Prediction of Buried X80 Steel Pipelines Under Compression and Bending at Strike-Slip Fault Crossings
,”
J. Natural Gas Sci. Eng.
,
32
, pp.
465
475
.
7.
Liu
,
X. B.
,
Zhang
,
H.
,
Gu
,
X. T.
,
Chen
,
Y. F.
,
Xia
,
M. Y.
, and
Wu
,
K.
,
2017
, “
Strain Demand Prediction Method for Buried X80 Steel Pipelines Crossing Oblique-Reverse Faults
,”
Earthquakes Struct.
,
12
(
3
), pp.
321
332
.
8.
Xie
,
X. J.
,
Symans
,
M. D.
,
O'Rourke
,
M. J.
, et al. 
2013
, “
Numerical Modeling of Buried HDPE Pipelines Subjected to Normal Faulting: A Case Study
,”
Earthquake Spectra
,
29
(
2
), pp.
609
632
.
9.
Xie
,
X. J.
,
Symans
,
M. D.
,
O'Rourke
,
M. J.
,
Abdoun, T. H.
,
O'Rourke, T. D.
,
Palmer, M. C.
, and
Stewart, H. E.
,
2011
, “
Numerical Modeling of Buried HDPE Pipelines Subjected to Strike-Slip Faulting
,”
J. Earthquake Eng.
,
15
(
8
), pp.
1273
1296
.
10.
Xie
,
X. J.
,
2008
, “
Numerical Analysis and Evaluation of Buried Pipeline Response to Earthquake-Induced Ground Fault Rupture
,” Ph.D. dissertations, Rensselaer Polytechnic Institute, Troy, NY.
11.
Ha
,
D.
,
Abdoun
,
T. H.
,
O'Rourke
,
M. J.
,
Symans
,
M. D.
,
O'Rourke
,
T. D.
,
Palmer
,
M. C.
, and
Stewart
,
H. E.
,
2008
, “
Buried High-Density Polyethylene Pipelines Subjected to Normal and Strike-Slip Faulting-a Centrifuge Investigation
,”
Can. Geotech. J.
,
45
(
12
), pp.
1733
1742
.
12.
Ha
,
D.
,
Abdoun
,
T. H.
,
O'Rourke
,
M. J.
,
Symans
,
M. D.
,
O'Rourke
,
T. D.
,
Palmer
,
M. C.
, and
Stewart
,
H. E.
,
2008
, “
Centrifuge Modeling of Earthquake Effects on Buried High-Density Polyethylene (HDPE) Pipelines Crossing Fault Zones
,”
J. Geotech. Geoenviron. Eng.
,
134
(
10
), pp.
1501
1515
.
13.
Jalali
,
H. H.
,
Rofooei
,
F. R.
, and
Attari
,
N. K. A.
,
2017
, “
Performance of Buried Gas Distribution Pipelines Subjected to Reverse Fault Movement
,”
J. Earthquake Eng.
(epub).
14.
Jalali
,
H. H.
,
Rofooei
,
F. R.
,
Attari
,
N. K. A.
, and
Samadian
,
M.
,
2016
, “
Experimental and Finite Element Study of the Reverse Faulting Effects on Buried Continuous Steel Gas Pipelines
,”
Soil Dyn. Earthquake Eng.
,
86
, pp.
1
14
.
15.
O'Rourke
,
T. D.
,
Jung
,
J. K.
, and
Argyrou
,
C.
,
2016
, “
Underground Pipeline Response to Earthquake-Induced Ground Deformation
,”
Soil Dyn. Earthquake Eng.
,
91
, pp.
272
283
.
16.
Jung
,
J. K.
,
O'Rourke
,
T. D.
, and
Argyrou
,
C.
,
2016
, “
Multi-Directional Force–Displacement Response of Underground Pipe in Sand
,”
Can. Geotech. J.
,
53
(
11
), pp.
1763
1781
.
17.
Uckan
,
E.
,
Akbas
,
B.
,
Shen
,
J.
,
Rou
,
W.
,
Paolacci
,
F.
, and
O'Rourke
,
M.
,
2015
, “
A Simplified Analysis Model for Determining the Seismic Response of Buried Steel Pipes at Strike-Slip Fault Crossings
,”
Soil Dyn. Earthquake Eng.
,
75
(
6
), pp.
55
65
.
18.
Liu
,
X. B.
,
Zhang
,
H.
,
Wu
,
K.
,
Xia
,
M. Y.
,
Chen
,
Y. F.
, and
Li
,
M.
,
2017
, “
Buckling Failure Mode Analysis of Buried X80 Steel Gas Pipeline Under Reverse Fault Displacement
,”
Eng. Failure Anal.
,
77
, pp.
50
64
.
19.
ASCE
,
1984
, “
Guidelines for the Seismic Design of Oil and Gas Pipeline Systems
,”
Committee on Gas and Liquid Fuel Lifelines of the American Society of Civil Engineers Technical Council on Lifeline Earthquake Engineering
,
American Society of Civil Engineers
,
Reston, VA
, pp.
10
12
.
20.
ALA-ASCE
,
2005
, “
Guidelines for the Design of Buried Steel Pipe (With Addenda Through February 2005)
,” American Lifelines Alliance-American Society of Civil Engineers, Reston, VA.
21.
Melissianos
,
V. E.
,
Vamvatsikos
,
D.
, and
Gantes
,
C. J.
,
2017
, “
Performance Assessment of Buried Pipelines at Fault Crossings
,”
Earthquake Spectra
,
33
(
1
), pp.
201
218
.
22.
Melissianos
,
V. E.
,
Vamvatsikos
,
D.
, and
Gantes
,
C. J.
,
2017
, “
Performance-Based Assessment of Protection Measures for Buried Pipes at Strike-Slip Fault Crossings
,”
Soil Dyn. Earthquake Eng.
,
101
, pp.
1
11
.
23.
Xu
,
L.
, and
Lin
,
M.
,
2017
, “
Analysis of Buried Pipelines Subjected to Reverse Fault Motion Using the Vector Form Intrinsic Finite Element Method
,”
Soil Dyn. Earthquake Eng.
,
93
, pp.
61
83
.
24.
Dadfar
,
B.
,
El Naggar
,
M. H.
, and
Nastev
,
M.
,
2015
, “
Ovalization of Steel Energy Pipelines Buried in Saturated Sands During Ground Deformations
,”
Comput. Geotech.
,
69
, pp.
105
113
.
25.
Vazouras
,
P.
,
Karamanos
,
S. A.
, and
Dakoulas
,
P.
,
2010
, “
Finite Element Analysis of Buried Steel Pipelines Under Strike-Slip Fault Displacements
,”
Soil Dyn. Earthquake Eng.
,
30
(
11
), pp.
1361
1376
.
26.
Vazouras
,
P.
,
Karamanos
,
S. A.
, and
Dakoulas
,
P.
,
2012
, “
Mechanical Behavior of Buried Steel Pipes Crossing Active Strike-Slip Faults
,”
Soil Dyn. Earthquake Eng.
,
41
(
5
), pp.
164
180
.
27.
Vazouras
,
P.
,
Dakoulas
,
P.
, and
Karamanos
,
S. A.
,
2015
, “
Pipe-Soil Interaction and Pipeline Performance Under Strike-Slip Fault Movements
,”
Soil Dyn. Earthquake Eng.
,
72
(
4
), pp.
48
65
.
28.
Vazouras
,
P.
, and
Karamanos
,
S. A.
,
2017
, “
Structural Behavior of Buried Pipe Bends and Their Effect on Pipeline Response in Fault Crossing Areas
,”
Bull. Earthquake Eng.
,
15
(11), pp. 4999–5024.
29.
Trifonov
,
O. V.
,
2015
, “
Numerical Stress-Strain Analysis of Buried Steel Pipelines Crossing Active Strike-Slip Faults With an Emphasis on Fault Modeling Aspects
,”
J. Pipeline Syst. Eng. Pract.
,
6
(
1
), p.
04014008
.
30.
Kaya
,
E. S.
,
Uckan
,
E.
,
O'Rourke
,
M. J.
,
Karamanos, S. A.
,
Akbas, B.
,
Cakir, F.
, and
Cheng, Y.
,
2016
, “
Failure Analysis of a Welded Steel Pipe at Kullar Fault Crossing
,”
Eng. Failure Anal.
,
71
(1), pp.
43
62
.
31.
Liu
,
X. B.
,
Zhang
,
H.
,
Li
,
M.
,
Xia
,
M. Y.
,
Zheng
,
W.
,
Wu
,
K.
, and
Han
,
Y. S.
,
2016
, “
Effects of Steel Properties on the Local Buckling Response of High Strength Pipelines Subjected to Reverse Faulting
,”
J. Natural Gas Sci. Eng.
,
33
, pp.
378
387
.
32.
Liu
,
X. B.
,
Zhang
,
H.
, and
Xia
,
M. Y.
,
2017
, “
Buckling Behavior of Buried Steel Pipeline Under Compression Strike-Slip Fault
,”
ASME
Paper No. PVP2017-65454.
33.
Ndubuaku, O.
,
Martens, M.
,
Cheng, J. R.
, and
Adeeb, S.
, 2017, “
Expression of a Generic Full-Range True Stress-True Strain Model for Pipeline Steels Using the Product-Log (Omega) Function
,”
ASME
Paper No. PVP 2017-65236.
34.
ASME
,
2016
, “
Pipeline Transportation Systems for Liquid Hydro Carbons and Other Liquids
,” American Society of Mechanical Engineers, New York, Standard No. ANSI/ASME2016.
35.
ASME
,
2016
, “
Gas Transmission and Distribution Piping Systems
,” American Society of Mechanical Engineers, New York, Standard No. ANSI/ASME2016.
36.
Hibbitt
,
D.
,
Karlsson
,
B.
, and
Sorensen
,
P.
,
2014
,
ABAQUS Standard User's and Reference Manuals
,
Version 6.14
, Dassault Systemes, Providence, RI.
37.
Banushi
,
G.
,
Squeglia
,
N.
, and
Thiele
,
K.
,
2018
, “
Innovative Analysis of a Buried Operating Pipeline Subjected to Strike-Slip Fault Movement
,”
Soil Dyn. Earthquake Eng.
,
107
, pp.
234
249
.
38.
Liu
,
A.
,
Hu
,
Y.
,
Zhao
,
F.
,
Li
,
X.
,
Takada
,
S.
, and
Zhao
,
L.
,
2004
, “
An Equivalent-Boundary Method for the Shell Analysis of Buried Pipelines Under Fault Movement
,”
Acta Seismol. Sin.
,
17
(
Suppl. 1
), pp.
150
156
.
39.
Ramberg
,
W.
, and
Osgood
,
W. R.
,
1943
, “
Description of Stress-Strain Curves by Three Parameters
,” National Advisory Committee for Aeronautics, Washington, DC, NACA Technical Note.
40.
Duan
,
D. M.
,
Zhou
,
J.
,
Rothwell
,
B.
,
Horsley
,
D.
, and
Pussegoda
,
N.
,
2008
, “
Strain Aging Effects in High Strength Line Pipe Materials
,”
ASME
Paper No. IPC2008-64427.
41.
Kainat
,
M.
,
Lin
,
M.
,
Cheng
,
J. R.
,
Martens
,
M.
, and
Adeeb
,
S.
,
2016
, “
Effects of the Initial Geometric Imperfections on the Buckling Behavior of High-Strength UOE Manufactured Steel Pipes
,”
ASME J. Pressure Vessel Technol.
,
138
(
5
), p.
051206
.
42.
Liu
,
X. B.
,
Zhang
,
H.
,
Wang
,
B. D.
,
Xia
,
M. Y.
,
Wu
,
K.
,
Zheng
,
Q.
, and
Han
,
Y. S.
,
2017
, “
Local Buckling Behavior and Plastic Deformation Capacity of High-Strength Pipe at Strike-Slip Fault Crossing
,”
Metals
,
8
(
1
), p.
22
.
43.
Neupane
,
S.
,
Adeeb
,
S.
,
Cheng
,
R.
,
Ferguson
,
J.
, and
Martens
,
M.
,
2012
, “
Modeling the Deformation Response of High Strength Steel Pipelines—Part I: Material Characterization to Model the Plastic Anisotropy
,”
ASME J. Appl. Mech.
,
79
(
5
), p.
051002
.
44.
Neupane
,
S.
,
Adeeb
,
S.
,
Cheng
,
R.
,
Ferguson
,
J.
, and
Martens
,
M.
,
2012
, “
Modeling the Deformation Response of High Strength Steel Pipelines—Part II: Effects of Material Characterization on the Deformation Response of Pipes
,”
ASME J. Appl. Mech.
,
79
(
5
), p.
051003
.
You do not currently have access to this content.