Underground gas storage (UGS), a key component of a natural gas pipeline network, can not only be used as an emergency gas source under a pipeline system failure situation but it is also available for seasonal peak shaving under pipeline system normal operation. Therefore, in order to meet the natural gas needs, it is of vital importance to safeguard the security of UGS operation and assess the reliability of UGS. The aim of the overall study is to develop an integration method for assessing operational reliability of UGS in a depleted reservoir under different injection-production scenarios, whereas existing studies only assess a single component or subsystem reliability. According to function zoning, UGS is separated into reservoir, well system, and surface system, and reservoir and surface system are connected through well system. The well system contains multiple injection/production wells. For the first step of the reliability assessment, the hydraulic calculation, including the gas injection process calculation and the gas production process calculation, is adopted to obtain the operational parameters of each component in UGS. Next, the reliability of the reservoir, injection/production well, and equipment in surface system is evaluated using operational parameters and a Monte Carlo approach. The reliability of the subsystem, such as the well system and surface system, is then calculated according to system reliability theory. Finally, operational reliability of UGS is obtained, which reflects the capacity of performing gas injection-production function. Two test cases are given to illustrate the integration method.

References

References
1.
Confort
,
M. J. F.
, and
Mothe
,
C. G.
,
2014
, “
Estimating the Required Underground Natural Gas Storage Capacity in Brazil From the Gas Industry Characteristics of Countries With Gas Storage Facilities
,”
J. Nat. Gas Sci. Eng.
,
18
, pp.
120
130
.
2.
Yang
,
C.
,
Wang
,
T.
,
Li
,
Y.
,
Yang
,
H.
,
Li
,
J.
,
Qu
,
D. A.
,
Xu
,
B.
,
Yang
,
Y.
, and
Daemen
,
J. J. K.
,
2015
, “
Feasibility Analysis of Using Abandoned Salt Caverns for Large-Scale Underground Energy Storage in China
,”
Appl. Energy
,
137
, pp.
467
481
.
3.
Tang
,
L.
,
Wang
,
J.
,
Ding
,
G.
,
Sun
,
S.
,
Zhao
,
K.
,
Sun
,
J.
,
Guo
,
K.
, and
Bai
,
F.
,
2016
, “
Downhole Inflow-Performance Forecast for Underground Gas Storage Based on Gas Reservoir Development Data
,”
Pet. Explor. Dev.
,
43
(
1
), pp.
138
142
.
4.
IGU
, 2006, “
Natural Gas Facts & Figures—October 2014 Edition
,” International Gas Union, Paris, France, accessed June 6, 2015, https://www.igu.org/resources-data
5.
Evans
,
D. J.
, and
West
,
J. M.
,
2007
, “
An Appraisal of Underground Gas Storage Technologies and Incidents, for the Development of Risk Assessment Methodology
,”
J. Fuel Cell Technol.
,
6
(
49
), pp.
97
107
.
6.
Xie
,
L. H.
,
Zhang
,
H.
, and
Li
,
H. L.
,
2009
, “
Accident Analysis and Risk Identification of Underground Gas Storage Rebuilt Upon the Depleted Oil and Gas Reservoirs
,”
Nat. Gas Ind.
,
29
(11), pp. 116–119 (in Chinese).
7.
Liao
,
H.
,
Guan
,
Z.
, and
Long
,
G.
,
2012
, “
Quantitative Risk Assessment on Safety and Reliability of Casing Strength for Oil and Gas Wells
,”
Energy Procedia
,
17
(
Pt. A
), pp.
429
435
.
8.
Adams
,
A. J.
,
Parfitt
,
S. H. L.
,
Reeves
,
T. B.
, and
Thorogood
,
J. L.
, “
Casing System Risk Analysis Using Structural Reliability
,” SPE/IADC Drilling Conference, Amsterdam, The Netherlands, Feb. 22–25,
SPE
Paper No. SPE-25693-MS.
9.
API
,
1994
,
Bulletin on Formulas and Calculations for Casing, Tubing, Drill Pipe and Line Pipe Properties
,
6th ed.
,
American Petroleum Institute
,
Washington, DC
.
10.
Yan
,
X.
,
2007
, “
Analysis of API Formulas and Calculation of Casing Strength Based on Reliability Theory
,”
Acta Petrolei Sin.
,
111
(
6
), pp.
2490
2496
.
11.
Deng
,
K.
,
Lin
,
Y.
,
Qiang
,
H.
,
Zeng
,
D.
,
Sun
,
Y.
, and
Lin
,
X.
,
2015
, “
New High Collapse Model to Calculate Collapse Strength for Casing
,”
Eng. Failure Anal.
,
58
(Pt. 1), pp.
295
306
.
12.
Sun
,
K.
,
Guo
,
B.
, and
Ghalambor
,
A.
,
2004
, “
Casing Strength Degradation Due to Corrosion—Applications to Casing Pressure Assessment
,” IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition, Kuala Lumpur, Malaysia, Sept. 13–15,
SPE
Paper No. SPE-88009-MS.
13.
Gurevich
,
A. E.
,
Endres
,
B. L.
,
Robertson
,
J. O.
, Jr.
, and
Chilingar
,
G. V.
,
1993
, “
Gas Migration From Oil and Gas Fields and Associated Hazards
,”
J. Pet. Sci. Eng.
,
9
(
3
), pp.
223
238
.
14.
Yu
,
B.
,
Yan
,
X.
,
Yang
,
H.
,
Xu
,
Z.
,
Yang
,
X.
, and
Feng
,
Y.
,
2014
, “
Non-Probabilistic Reliability Analysis of Dead Fault Slip in Underground Gas Storage Based on Convex Model
,”
Acta Petrolei Sin.
,
35
(
3
), pp.
577
583
(in Chinese).
15.
Rohmer
,
J.
, and
Bouc
,
O.
,
2010
, “
A Response Surface Methodology to Address Uncertainties in Cap Rock Failure Assessment for CO Geological Storage in Deep Aquifers
,”
Int. J. Greenhouse Gas Control
,
4
(
2
), pp.
198
208
.
16.
Yang
,
X.
,
Cheng
,
L.
,
He
,
X.
,
Zheng
,
X.
,
Liu
,
C.
, and
He
,
X.
,
2013
, “
Faults Integrity Assessment of Underground Gas Storage
,”
Oil Gas Storage Transportation
,
32
(
6
), pp.
578
582
(in Chinese).
17.
Wickenhauser
,
P. L.
,
Wagg
,
B. T.
, and
Barbuto
,
F. A.
,
2006
, “
Quantitative Risk Assessment: Underground Natural Gas Storage Facilities
,”
ASME
Paper No. IPC2006-10411.
18.
Wang
,
K.
,
Zhao
,
X.
,
Luo
,
J.
,
Dong
,
B.
,
Li
,
L.
, and
Cai
,
K.
,
2010
, “
Risk Assessment of Underground Natural Gas Storage Station
,”
ASME
Paper No. IPC2010-31554.
19.
Wang
,
A. Q.
,
Hu
,
J. Q.
,
Zhang
,
L. B.
, and
Li
,
W. Q.
,
2013
, “
Study on Dynamic Failure Modes of Underground Natural Gas Storage Reciprocating Compressor Under Variable Working Condition
,”
China Saf. Sci. J.
,
23
(
8
), p.
139
.
20.
Neuburg
,
H.
, and
Schmidt
,
K. D.
,
1988
, “
High Operation Flexibility and Reliability by Multiunit Compressor Arrangement for Gas Storage Applications
,”
ASME J. Eng. Gas Turbines Power
,
111
(
2
), pp.
351
353
.
21.
Yang
,
C.
,
Jing
,
W.
,
Daemen
,
J. J. K.
,
Zhang
,
G.
, and
Du
,
C.
,
2013
, “
Analysis of Major Risks Associated With Hydrocarbon Storage Caverns in Bedded Salt Rock
,”
Reliab. Eng. Syst. Saf.
,
113
(
1
), pp.
94
111
.
22.
Zhang
,
G.
,
Wu
,
Y.
,
Wang
,
L.
,
Zhang
,
K.
,
Daemen
,
J. J. K.
, and
Liu
,
W.
,
2015
, “
Time-Dependent Subsidence Prediction Model and Influence Factor Analysis for Underground Gas Storages in Bedded Salt Formations
,”
Eng. Geol.
,
187
, pp.
156
169
.
23.
Wang
,
T.
,
Ma
,
H.
,
Yang
,
C.
,
Shi
,
X.
, and
Daemen
,
J. J. K.
,
2015
, “
Gas Seepage around Bedded Salt Cavern Gas Storage
,”
J. Nat. Gas Sci. Eng.
,
26
, pp.
61
71
.
24.
Zhang
,
N.
,
Ma
,
L.
,
Wang
,
M.
,
Zhang
,
Q.
,
Li
,
J.
, and
Fan
,
P.
,
2017
, “
Comprehensive Risk Evaluation of Underground Energy Storage Caverns in Bedded Rock Salt
,”
J. Loss Prev. Process Ind.
,
45
, pp.
264
276
.
25.
Jia
,
C.
,
Liu
,
J. T.
,
Zhang
,
Q. Y.
,
Shen
,
X.
,
Li
,
S. C.
,
Liu
,
J.
, and
Yang
,
C. H.
,
2011
, “
Time-Variant Reliability Calculation and Risk Analysis for Salt Rock Gas Storage During Operation Time
,”
Rock Soil Mech.
,
32
(
5
), pp.
1479
1484
.
26.
Evans
,
D. J.
, and
Chadwick
,
R. A.
,
2009
, “
Underground Gas Storage: Worldwide Experiences and Future Development in the UK and Europe
,”
Environ. Eng. Geosci.
,
17
(
1
), pp.
94
96
.
27.
Moghadam
,
S.
,
Jeje
,
O.
, and
Mattar
,
L.
,
2011
, “
Advanced Gas Material Balance, in Simplified Format
,”
J. Can. Pet. Technol.
,
50
(
1
), pp.
90
98
.
28.
Mattar
,
L.
,
Anderson
,
D.
, and
Stotts
,
G. G.
,
2006
, “
Dynamic Material Balance-Oil-or Gas-in-Place Without Shut-Ins
,”
J. Can. Pet. Technol.
,
45
(
11
), pp.
7
10
.
29.
Li
,
X.
,
Huang
,
B.
, and
Hu
,
Y.
,
2003
, “
The Establishment and Application of Binomial Deliverability Equation for Horizontal Gas Well
,”
J. Can. Pet. Technol.
,
42
(
10
), pp. 8–10.
30.
Ma
,
X. M.
, and
Zhao
,
P. Q.
,
2011
,
Underground Gas Storage Design and Practical Technology
,
Petroleum Industry Press
, Beijing, China, pp. 49–52 (in Chinese).
31.
Fang
,
L.
,
Gao
,
S.
, and
Sha
,
Z.
,
2000
, “
A Study on the Node Analysis Method for Gas Injection System of Underground Gas Storage Bank
,”
Pet. Geol. Oilfield Dev.
, (in Chinese).
32.
GB
,
2015
,
Code for Design of Gas Transmission Pipeline Engineering
,
China Planning Press
,
Beijing, China
(in Chinese).
33.
Peng
,
S.
,
Liu
,
E.
,
Xian
,
W.
,
Wang
,
D.
, and
Zhang
,
H.
,
2015
, “
Dynamic Simulation of an Underground Gas Storage Injection-Production Network
,”
J. Environ. Biol.
,
36
(
4
), pp.
799
806
.
34.
Fjaer
,
E.
,
Holt
,
R. M.
,
Horsrud
,
P.
,
Raaen
,
A. M.
, and
Risnes
,
R.
,
2008
, “
Petroleum Related Rock Mechanics
,”
Dev. Pet. Sci.
,
33
(2), pp. 139–155.
35.
Song
,
X.
,
Peng
,
C.
,
Li
,
G.
, and
Wen
,
K.
, 2016, “
A Probabilistic Model to Evaluate the Operation Reliability of the Underground System in Underground Gas Storage Transformed From Depleted Gas Reservoir
,” International Petroleum Technology Conference, Bangkok, Thailand, Nov. 14–16, Paper No.
IPTC-18664-MS
.
36.
Venkatesh
,
E. S
., 1986, “
Erosion Damage in Oil and Gas Wells
,” SPE Rocky Mountain Regional Meeting, Billings, MT, May 19–21,
SPE
Paper No. SPE-15183-MS.
37.
Rausand
,
M.
, and
Hoyland
,
A.
,
1994
,
System Reliability Theory
,
Wiley-Interscience
,
Hoboken, NJ
.
38.
CSA
,
2007
, “
Limit State Equation for Burst of Large Leaks and Rupture for Corrosion Defect
,” Oil and Gas Pipeline Systems,
Canadian Standards Association
, Mississauga, ON, Canada, pp.
554
555
.
You do not currently have access to this content.