This research paper is concerned with the mechanical behavior of the cylindrical vessels with hillside nozzles when subjected to both pressure and nozzle bending loads in cyclic forms. The influence of hillside angle on shakedown (SD) limits of the connection under cyclic pressure and combined steady pressure with cyclic nozzle bending is investigated. A shell finite element analysis model is built for the assembly using five different hillside angles ranging from 0 deg to 40 deg. Shakedown limits are determined by a direct technique known as the nonlinear superposition method (NSM). Bree diagrams for cyclic out of plane opening (OPO)/in plane (IP) nozzle moments combined with steady internal pressure are determined. The results show an increase in both OPO and IP shakedown moments as the hillside angle is increased. In addition, the OPO shakedown limit moments for all hillside angles were found to be insensitive to the level of internal pressure; this differs from the IP shakedown moment which starts to decrease with pressure for the high pressures.

References

1.
Wichman K. R
,
M. J. L.
, and
Hopper
,
A. G.
,
1979
, “Local Stresses Spherical Cylindrical Shells Due to External Loadings,” Welding Research Council, New York, Report No. 107.
2.
Mershon
,
J. L.
,
Mokhtarian
,
K.
,
Ranjan
,
G. V.
, and
Rodabaugh
,
E. C.
,
1987
, “Local Stresses in Cylindrical Shells Due to External Loadings on Nozzles-Supplement to WRC Bulletin No. 107 (Revision I),” Welding Research Council, New York, Report No. WRC 297.
3.
ASME
,
2015
,
ASME B&PVC, Section VIII, Division 2, Rules for Construction of Pressure Vessels—Alternative Rules
,
American Society of Mechanical Engineers
,
New York
.
4.
Mershon
,
J. L.
,
1970
, “Part 1: Interpretive Report on Oblique Nozzle Connections in Pressure Vessel Heads and Shells Under Internal Pressure Loading,” Welding Research Council, New York, Report No. 153.
5.
Wang
,
H. F.
,
Sang
,
Z. F.
,
Xue
,
L. P.
, and
Widera
,
G. E. O.
,
2006
, “
Elastic Stresses of Pressurized Cylinders With Hillside Nozzle
,”
ASME J. Pressure Vessel Technol.
,
128
(
4
), pp.
625
631
.
6.
Hazlett
,
T.
,
1990
, “
Three Dimensional Parametric Finite Element Analyses of Hillside Connections in Cylinders Subject to Internal Pressure
,” ASME Pressure Vessels & Piping Conference, Nashville, TN, June 17–21, pp. 141–145.
7.
Skopinsky
,
V. N.
,
1993
, “
Numerical Stress Analysis of Intersecting Cylindrical Shells
,”
ASME J. Pressure Vessel Technol.
,
115
(
3
), pp.
275
282
.
8.
Rodabaugh
,
E. C.
,
2000
, “Part 1: Internal Pressure Design of Isolated Nozzles in Cylindrical Vessels With d/D up to and Including 1.00: Report No. 1: Code Rules for Internal Pressure Design of Isolated Nozzles in Cylindrical Vessels,” Welding Research Council, New York, Report No. WRC 451.
9.
Fang
,
J.
,
Li
,
N.
,
Sang
,
Z. F.
, and
Widera
,
G. E. O.
,
2009
, “
Study of Elastic Strength for Cylinders With Hillside Nozzle
,”
ASME J. Pressure Vessel Technol.
,
131
(
5
), p.
051202
.
10.
Bree
,
J.
,
1967
, “
Elastic-Plastic Behaviour of Thin Tubes Subjected to Internal Pressure and Intermittent High-Heat Fluxes With Application to Fast-Nuclear-Reactor Fuel Elements
,”
J. Strain Anal. Eng. Des.
,
2
(
3
), pp.
226
238
.
11.
Megahed
,
M. M.
,
1981
, “
Influence of Hardening Rule on the Elasto-Plastic Behaviour of a Simple Structure Under Cyclic Loading
,”
Int. J. Mech. Sci.
,
23
(
3
), pp.
169
182
.
12.
Mackenzie
,
D.
, and
Boyle
,
J. T.
,
1992
, “
A Method of Estimating Limit Loads by Iterative Elastic Analysis—I: Simple Examples
,”
Int. J. Pressure Vessels Piping
,
53
(
1
), pp.
77
95
.
13.
Nadarajah
,
C.
,
Mackenzie
,
D.
, and
Boyle
,
J. T.
,
1992
, “
A Method of Estimating Limit Loads by Iterative Elastic Analysis—II: Nozzle Sphere Intersections With Internal Pressure and Radial Load
,”
Int. J. Pressure Vessels Piping
,
53
(
1
), pp.
97
119
.
14.
Shi
,
J.
,
Mackenzie
,
D.
, and
Boyle
,
J. T.
,
1992
, “
A Method of Estimating Limit Loads by Iterative Elastic Analysis—III: Torispherical Heads Under Internal Pressure
,”
Int. J. Pressure Vessels Piping
,
53
(
1
), pp.
121
142
.
15.
Melan
,
E.
,
1936
, “
Theorie Statisch Unbestimmter Systeme Aus Ideal-Plastichem Baustoff
,”
Sitzungsber. Kais. Akad. Wiss. Wien
,
2A
(
145
), pp.
195
218
.
16.
Ponter
,
A. R. S.
,
Fuschi
,
P.
, and
Engelhardt
,
M.
,
2000
, “
Limit Analysis for a General Class of Yield Conditions
,”
Eur. J. Mech.-A/Solids
,
19
(
3
), pp.
401
421
.
17.
Chen
,
H. F.
, and
Ponter
,
A. R. S.
,
2001
, “
Shakedown and Limit Analyses for 3-D structures Using the Linear Matching Method
,”
Int. J. Pressure Vessels Piping
,
78
(
6
), pp. 443–451.
18.
Ure
,
J.
,
Chen
,
H.
, and
Tipping
,
D.
,
2015
, “
Verification of the Linear Matching Method for Limit and Shakedown Analysis by Comparison With Experiments
,”
ASME J. Pressure Vessel Technol.
,
137
(
3
), p.
031003
.
19.
Muscat
,
M.
, and
Mackenzie
,
D.
,
2003
, “
Elastic-Shakedown Analysis of Axisymmetric Nozzles
,”
ASME J. Pressure Vessel Technol.
,
125
(
4
), pp.
365
370
.
20.
Abdalla
,
H. F.
,
Megahed
,
M. M.
, and
Younan
,
M. Y A.
,
2006
, “
Determination of Shakedown Limit Load for a 90-Degree Pipe Bend Using a Simplified Technique
,”
ASME J. Pressure Vessel Technol.
,
128
(
4
), pp.
618
624
.
21.
Oh
,
C.-S.
,
Kim
,
Y.-J.
, and
Park
,
C.-Y.
,
2008
, “
Shakedown Limit Loads for Elbows Under Internal Pressure and Cyclic In-Plane Bending
,”
Int. J. Pressure Vessels. Piping
,
85
(
6
), pp.
394
405
.
22.
Vermaak
,
N.
,
Valdevit
,
L.
,
Evans
,
A. G.
,
Zok
,
F. W.
, and
Mcmeeking
,
R. M.
,
2011
, “
Implications of Shakedown for Design of Actively Cooled Thermostructural Panels
,”
J. Mech. Mater. Struct.
,
6
(
9–10
), pp.
1313
1327
.
23.
Abdalla
,
H. F.
,
Megahed
,
M. M.
, and
Younan
,
M. Y. A.
,
2009
, “
Comparison of Pipe Bend Ratchetting/Shakedown Test Results With the Shakedown Boundary Determined Via a Simplified Technique
,”
ASME
Paper No. PVP2009-77403.
24.
Abdalla
,
H. F.
,
Megahed
,
M. M.
, and
Younan
,
M. Y. A.
,
2011
, “
A Simplified Technique for Shakedown Limit Load Determination of a Large Square Plate With a Small Central Hole Under Cyclic Biaxial Loading
,”
Nucl. Eng. Des.
,
241
(
3
), pp.
657
665
.
25.
Abdalla
,
H. F.
,
2014
, “
Shakedown Limit Load Determination of a Cylindrical Vessel–Nozzle Intersection Subjected to Steady Internal Pressures and Cyclic in-Plane Bending Moments
,”
ASME J. Pressure Vessel Technol.
,
136
(
5
), p.
051602
.
26.
Abdalla
,
H. F.
,
2014
, “
Elastic Shakedown Boundary Determination of a Cylindrical Vessel-Nozzle Intersection Subjected to Steady Internal Pressures and Cyclic Out-of-Plane Bending Moments
,”
Nucl. Eng. Des.
,
267
, pp.
189
196
.
27.
ANSYS, 2012, “ANSYS Mechanical APDL Element Reference,” ANSYS Inc., Canonsburg, PA, pp. 724–746.
28.
Wang
,
H. F.
,
Sang
,
Z. F.
,
Xue
,
L. P.
, and
Widera
,
G. E. O.
,
2009
, “
Burst Pressure of Pressurized Cylinders With Hillside Nozzle
,”
ASME J. Pressure Vessel Technol.
,
131
(
4
), p.
041204
.
29.
Wu
,
B. H.
,
Sang
,
Z. F.
, and
Widera
,
G. E. O.
,
2010
, “
Plastic Analysis for Cylindrical Vessels Under In-Plane Moment on the Nozzle
,”
ASME J. Pressure Vessel Technol.
,
132
(
6
), p.
061203
.
30.
Sang
,
Z. F.
,
Wang
,
Z. L.
,
Xue
,
L. P.
, and
Widera
,
G. E. O.
,
2005
, “
Plastic Limit Loads of Nozzles in Cylindrical Vessels Under Out-of-Plane Moment Loading
,”
Int. J. Pressure Vessels Piping
,
82
(
8
), pp.
638
648
.
31.
Oda
,
A. A.
,
Megahed
,
M. M.
, and
Abdalla
,
H. F.
,
2015
, “
Effect of Local Wall Thinning on Shakedown Regimes of Pressurized Elbows Subjected to Cyclic In-Plane and Out-of-Plane Bending
,”
Int. J. Pressure Vessels Piping
,
134
, pp.
11
24
.
32.
Abdalla
,
H. F.
,
Younan
,
M. Y. A.
, and
Megahed
,
M. M.
,
2011
, “
Shakedown Limit Load Determination for a Kinematically Hardening 90 Deg Pipe Bend Subjected to Steady Internal Pressures and Cyclic Bending Moments
,”
ASME J. Pressure Vessel Technol.
,
133
(
5
), p.
051212
.
You do not currently have access to this content.