Ductile failure in steels is highly controlled by the stress state, characterized by the stress triaxiality (T) and the Lode parameter (L). The ASME Boiler and Pressure Vessel Code requires pressure vessels to be designed to resist local ductile failure. However, the standard does not account for the Lode parameter dependence in its failure locus. In this study, the influence of the stress state, characterized T and L, on the ductility of ASME tubular product steel grades is investigated. Two seamless pipes of midstrength carbon steel SA-106 Gr. B and high-strength superduplex steel SA-790 were considered. Ring specimen geometries for plane strain (PS) stress state (L = 0) and tensile stress (TS) state (L = −1) are utilized to establish the ductile failure locus in terms of T and L for the two steels. The experimental results (EXP) show that the effect of the Lode parameter on the failure locus for the SA-106 Gr. B steel is insignificant, whereas for the SA-790 steel, the effect is rather significant. A parameter SL is introduced in order to quantify the sensitivity of the failure locus to the Lode parameter. It is found that for materials with ultimate strength lower than about 550 MPa, the sensitivity to L is insignificant (SL ≈ 1), whereas for materials with ultimate strength higher than 550 MPa, the sensitivity to L could be significant (SL > 1). Scanning electron microscopic (SEM) analysis of the fracture surfaces revealed that the sensitivity to L is closely associated with the rupture micromechanisms involved.

References

References
1.
Barsoum
,
I.
,
Faleskog
,
J.
, and
Pingle
,
S.
,
2012
, “
The Effect of Stress State on Ductility in the Moderate Stress Triaxiality Regime of Medium and High Strength Steels
,”
Int. J. Mech. Sci.
,
65
(
1
), pp.
203
212
.
2.
Bai
,
Y.
,
Teng
,
X.
, and
Wierzbicki
,
T.
,
2009
, “
On the Application of Stress Triaxiality Formula for Plane Strain Fracture Testing
,”
ASME J. Eng. Mater. Technol.
,
131
(
2
), p.
021002
.
3.
Bao
,
Y.
, and
Wierzbicki
,
T.
,
2004
, “
On Fracture Locus in the Equivalent Strain and Stress Triaxiality Space
,”
Int. J. Mech. Sci.
,
46
(
1
), pp.
81
98
.
4.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1992
, “
The Relation Between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids
,”
J. Mech. Phys. Solids
,
40
(
6
), pp.
1377
1397
.
5.
Tvergaard
,
V.
, and
Needleman
,
A.
,
1984
, “
Analysis of the Cup-Cone Fracture in a Round Tensile Bar
,”
Acta Metall.
,
32
(
1
), pp.
157
169
.
6.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth—Part 1: Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
,
99
(
1
), pp.
2
15
.
7.
Rice
,
J. R.
, and
Tracey
,
D. M.
,
1969
, “
On the Ductile Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids
,
17
(
3
), pp.
201
217
.
8.
Lode
,
W.
,
1926
, “
Versuche Über Den Einfluß Der Mittleren Hauptspannung Auf Das Fließen Der Metalle Eisen, Kupfer Und Nickel
,”
Z. Phys.
,
36
(
11–12
), pp.
913
939
.
9.
Graham
,
S. M.
,
Zhang
,
T.
,
Gao
,
X.
, and
Hayden
,
M.
,
2012
, “
Development of a Combined Tension-Torsion Experiment for Calibration of Ductile Fracture Models Under Conditions of Low Triaxiality
,”
Int. J. Mech. Sci.
,
54
(
1
), pp.
172
181
.
10.
Gao
,
X.
,
Zhang
,
T.
,
Hayden
,
M.
, and
Roe
,
C.
,
2009
, “
Effects of the Stress State on Plasticity and Ductile Failure of an Aluminum 5083 Alloy
,”
Int. J. Plast.
,
25
(
12
), pp.
2366
2382
.
11.
Bai
,
Y.
, and
Wierzbicki
,
T.
,
2008
, “
A New Model of Metal Plasticity and Fracture With Pressure and Lode Dependence
,”
Int. J. Plast.
,
24
(
6
), pp.
1071
1096
.
12.
Barsoum
,
I.
, and
Faleskog
,
J.
,
2007
, “
Rupture Mechanisms in Combined Tension and Shear-Micromechanics
,”
Int. J. Solids Struct.
,
44
(
17
), pp.
5481
5498
.
13.
Barsoum
,
I.
, and
Faleskog
,
J.
,
2007
, “
Rupture Mechanisms in Combined Tension and Shear-Experiments
,”
Int. J. Solids Struct.
,
44
(
6
), pp.
1768
1786
.
14.
Barsoum
,
I.
,
Khan
,
F.
,
Molki
,
A.
, and
Seibi
,
A.
,
2014
, “
Modeling of Ductile Crack Propagation in Expanded Thin-Walled 6063-T5 Aluminum Tubes
,”
Int. J. Mech. Sci.
,
80
, pp.
160
168
.
15.
Clausing
,
D. P.
,
1970
, “
Effect of Plastic Strain State on Ductility and Toughness
,”
Int. J. Fract. Mech.
,
6
(
1
), pp.
71
85
.
16.
ASME,
2011
, “
ASME-BPVC, Section VIII-Division 2: Alternative Rules
,” American Society of Mechanical Engineers, New York.
17.
Al-Khaled
,
M. A.
, and
Barsoum
,
I.
,
2018
, “
New Ring Specimen Geometries for Determining the Failure Locus of Tubulars
,”
ASME J. Pressure Vessel Technol.
,
140
(1), p.
011405
.
18.
Dassault Systèmes,
2014
,
ABAQUS Standard User's Manual
, Version
6.13
,
Dassault Systèmes Simulia Corp.
, Providence, RI.
19.
Barsoum
,
I.
, and
Al Ali
,
K. F.
,
2015
, “
A Procedure to Determine the Tangential True Stress-Strain Behavior of Pipes
,”
Int. J. Pressure Vessels Piping
,
128
, pp.
59
68
.
20.
API,
2007
, “
API 579-1/ASME FFS-1 Fitness for Service
,”
2nd ed.
, American Petroleum Institute, Washington, DC, Standard No.
PD395 - API 579-1/ASME FFS-1
.
21.
ASME
, 2010, “ASME-BPVC, Section II-Part D: Material Properties (Metric),” American Society of Mechanical Engineers, New York.
22.
Pereira
,
J. C. R.
,
de Jesus
,
A. M. P.
, and
Fernandes
,
A. A.
,
2016
, “
A New Ultra-Low Cycle Fatigue Model Applied to the X60 Piping Steel
,”
Int. J. Fatigue
,
93
(
Pt. 1
), pp.
201
213
.
23.
Ghajar
,
R.
,
Mirone
,
G.
, and
Keshavarz
,
A.
,
2013
, “
Ductile Failure of X100 Pipeline Steel—Experiments and Fractography
,”
Mater. Des.
,
43
, pp.
513
525
.
You do not currently have access to this content.