The interaction of a cavity shear layer with the sound field of an acoustic mode can generate an aeroacoustic source which is capable of initiating and sustaining acoustic resonances in the duct housing the cavity. This aeroacoustic source is determined experimentally for an internal axisymmetric cavity exposed to high Reynolds number, fully developed turbulent pipe flow without the need to resolve the details of neither the unsteady flow field nor the flow-sound interaction process at the cavity. The experimental technique, referred to here as the standing wave method (SWM), employs six microphones distributed upstream and downstream of the cavity to evaluate the fluctuating pressure difference generated by the oscillating cavity shear layer in the presence of an externally imposed sound wave. The results of the aeroacoustic source are in good agreement with the concepts of free shear layer instability and the fluid-resonant oscillation behavior. The accuracy of the measurement technique is evaluated by means of sensitivity tests. In addition, the measured source is used to predict the self-excited acoustic resonance of a shallow cavity in a pipeline. Comparison of the predicted and measured results shows excellent prediction of the self-excited acoustic resonance, including the resonance frequency, the lock-in velocity range, and the amplitude of the self-generated acoustic resonance.

References

References
1.
Howe
,
M. S.
,
1980
, “
The Dissipation of Sound at an Edge
,”
J. Sound Vib.
,
70
(
3
), pp.
407
411
.
2.
Howe
,
M. S.
,
1975
, “
Contributions to the Theory of Aerodynamic Sound, With Application to Excess Jet Noise and the Theory of the Flute
,”
J. Fluid Mech.
,
71
(
4
), pp.
625
673
.
3.
Beckner, W. D.
, 2002, “
Failure of Steam Dryer Cover Plate After a Recent Power Uprate
,” United States Nuclear Regulatory Commission, Washington, DC, NRC Information Notice No.
2002-26
.https://www.nrc.gov/docs/ML0225/ML022530291.pdf
4.
Ziada
,
S.
,
2010
, “
Flow-Excited Acoustic Resonance in Industry
,”
ASME J. Pressure Vessel Technol.
,
132
(
1
), p. 0
15001
.
5.
Lillberg
,
E.
, and
Conzen
,
J.
,
2012
, “
Acoustically Induced Vibration in Steam Line Isolation Valves—Scale Tests and Mitigation
,”
Inspecta Kärnteknik Conference
, Stockholm, Sweden, Oct. 4–7, pp.
4
5
.
6.
Krishnamurty
,
K.
,
1955
, “
Acoustic Radiation From Two-Dimensional Rectangular Cutouts in Aerodynamic Surfaces
,” National Advisory Committee for Aeronautics, Washington, DC, NACA Technical Note No. 3457.
7.
Belfroid
,
S. P. C.
,
Shatto
,
D. P.
, and
Peters
,
R. M. C. A. M.
,
2007
, “
Flow Induced Pulsations Caused by Corrugated Tubes
,”
ASME
Paper No. PVP2007-26503.
8.
Mohamed
,
S.
,
Graf
,
H. R.
, and
Ziada
,
S.
,
2011
, “
Aeroacoustic Source of a Shallow Cavity in a Pipeline
,”
ASME
Paper No. PVP2011-57437.
9.
Nakiboğlu
,
G.
,
Belfroid
,
S. P. C.
,
Golliard
,
J.
, and
Hirschberg
,
A.
,
2011
, “
On the Whistling of Corrugated Pipes: Effect of Pipe Length and Flow Profile
,”
J. Fluid Mech.
,
672
(
1922
), pp.
78
108
.
10.
Goyder
,
H.
,
2013
, “
Noise Generation and Propagation Within Corrugated Pipes
,”
ASME J. Pressure Vessel Technol.
,
135
(
3
), p. 0
30901
.
11.
Ziada
,
S.
,
Bühlmann
,
E. T.
, and
Bolleter
,
U.
,
1989
, “
Flow Impingement as an Excitation Source in Control Valves
,”
J. Fluids Struct.
,
3
(
5
), pp.
529
549
.
12.
Salt
,
E.
,
Mohamed
,
S.
,
Arthurs
,
D.
, and
Ziada
,
S.
,
2014
, “
Aeroacoustic Sources Generated by Flow-Sound Interaction in a T-Junction
,”
J. Fluids Struct.
,
51
, pp.
116
131
.
13.
Graf
,
H. R.
, and
Ziada
,
S.
,
2010
, “
Excitation Source of a Side-Branch Shear Layer
,”
J. Sound Vib.
,
329
(
14
), pp.
2825
2842
.
14.
Tonon
,
D.
,
Hirschberg
,
A.
,
Golliard
,
J.
, and
Ziada
,
S.
,
2011
, “
Aeroacoustics of Pipe Systems With Closed Branches
,”
Int. J. Aeroacoustics
,
10
(
2–3
), pp.
201
275
.
15.
Ziada
,
S.
, and
Lafon
,
P.
,
2013
, “
Flow-Excited Acoustic Resonance Excitation Mechanism, Design Guidelines, and Counter Measures
,”
ASME Appl. Mech. Rev.
,
66
(
1
), p. 0
11002
.
16.
Aly
,
K.
, and
Ziada
,
S.
,
2016
, “
Review of Flow-Excited Resonance of Acoustic Trapped Modes in Ducted Shallow Cavities
,”
ASME J. Pressure Vessel Technol.
,
138
(
4
), p. 0
40803
.
17.
Rockwell
,
D.
, and
Naudascher
,
E.
,
1978
, “
Review—Self-Sustaining Oscillations of Flow past Cavities
,”
ASME J. Fluids Eng.
,
100
(
2
), pp.
152
165
.
18.
Ziada
,
S.
,
1994
, “
A Flow Visualization Study of Flow-Acoustic Coupling at the Mouth of a Resonant Side-Branch
,”
J. Fluids Struct.
,
8
(
4
), pp.
391
416
.
19.
Ziada
,
S.
, and
Shine
,
S.
,
1999
, “
Strouhal Numbers of Flow-Excited Acoustic Resonance of Closed Side Branches
,”
J. Fluids Struct.
,
13
(
1
), pp.
127
142
.
20.
Keller
,
J. J.
, and
Escudier
,
M. P.
,
1983
, “
Flow-Excited Resonances in Covered Cavities
,”
J. Sound Vib.
,
86
(
2
), pp.
199
226
.
21.
Ziada
,
S.
,
Ng
,
H.
, and
Blake
,
C. E.
,
2003
, “
Flow Excited Resonance of a Confined Shallow Cavity in Low Mach Number Flow and Its Control
,”
J. Fluids Struct.
,
18
(
1
), pp.
79
92
.
22.
Aly
,
K.
, and
Ziada
,
S.
,
2010
, “
Flow-Excited Resonance of Trapped Modes of Ducted Shallow Cavities
,”
J. Fluids Struct.
,
26
(
1
), pp.
92
120
.
23.
Aly
,
K.
, and
Ziada
,
S.
,
2012
, “
Effect of Mean Flow on the Trapped Modes of Internal Cavities
,”
J. Fluids Struct.
,
33
, pp.
70
84
.
24.
Davies
,
P. O. A. L.
,
1981
, “
Flow-Acoustic Coupling in Ducts
,”
J. Sound Vib.
,
77
(
2
), pp.
191
209
.
25.
Rockwell
,
D.
, and
Schachenmann
,
A.
,
1982
, “
Self-Generation of Organized Waves in an Impinging Turbulent Jet at Low Mach Number
,”
J. Fluid Mech.
,
117
(
1
), pp.
425
441
.
26.
Huang
,
X.
, and
Weaver
,
D.
,
1994
, “
Control of Flow-Induced Fin Vibration by Anti-Sound
,”
J. Sound Vib.
,
169
(
3
), pp.
428
432
.
27.
Geveci
,
M.
,
Oshkai
,
P.
,
Rockwell
,
D.
,
Lin
,
J. C.
, and
Pollack
,
M.
,
2003
, “
Imaging of the Self-Excited Oscillation of Flow Past a Cavity During Generation of a Flow Tone
,”
J. Fluids Struct.
,
18
(
6
), pp.
665
694
.
28.
Rockwell
,
D.
,
Lin
,
J. C.
,
Oshkai
,
P.
,
Reiss
,
M.
, and
Pollack
,
M.
,
2003
, “
Shallow Cavity Flow Tone Experiments: Onset of Locked-on States
,”
J. Fluids Struct.
,
17
(
3
), pp.
381
414
.
29.
Bruggeman
,
J. C.
,
Hirschberg
,
A.
,
van Dongen
,
M. E. H.
,
Wijnands
,
A. P. J.
, and
Gorter
,
J.
,
1991
, “
Self-Sustained Aero-Acoustic Pulsations in Gas Transport Systems: Experimental Study of the Influence of Closed Side Branches
,”
J. Sound Vib.
,
150
(
3
), pp.
371
393
.
30.
Stoneman
,
S. A. T.
,
Hourigan
,
K.
,
Stokes
,
A. N.
, and
Welsh
,
M. C.
,
1988
, “
Resonant Sound Caused by Flow past Two Plates in Tandem in a Duct
,”
J. Fluid Mech.
,
192
(
1
), p.
455
.
31.
Thompson
,
M. C.
,
Hourigan
,
K.
,
Welsh
,
M. C.
, and
Brocher
,
E.
,
1992
, “
Acoustic Sources in a Tripped Flow Past a Resonator Tube
,”
AIAA J.
,
30
(
6
), pp.
1484
1491
.
32.
Hourigan
,
K.
,
Welsh
,
M. C.
,
Thompson
,
M. C.
, and
Stokes
,
A. N.
,
1990
, “
Aerodynamic Sources of Acoustic Resonance in a Duct With Baffles
,”
J. Fluids Struct.
,
4
(
4
), pp.
345
370
.
33.
Kriesels
,
P. C.
,
Peters
,
M.
,
Hirschberg
,
A.
,
Wijnands
,
A. P. J.
,
Iafrati
,
A.
,
Riccardi
,
G.
,
Piva
,
R.
, and
Bruggeman
,
J. C.
,
1995
, “
High Amplitude Vortex-Induced Pulsations in a Gas Transport System
,”
J. Sound Vib.
,
184
(
2
), pp.
343
368
.
34.
Hofmans
,
G. C. J.
,
1998
, “
Vortex Sound in Confined Flows
,” Ph.D. thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands.
35.
Radavich
,
P. M.
,
Selamet
,
A.
, and
Novak
,
J. M.
,
2001
, “
A Computational Approach for Flow–Acoustic Coupling in Closed Side Branches
,”
J. Acoust. Soc. Am.
,
109
(
4
), pp.
1343
1353
.
36.
Oshkai
,
P.
, and
Yan
,
T.
,
2008
, “
Experimental Investigation of Coaxial Side Branch Resonators
,”
J. Fluids Struct.
,
24
(
4
), pp.
589
603
.
37.
Finnegan
,
S. L.
,
Meskell
,
C.
, and
Ziada
,
S.
,
2009
, “
Experimental Investigation of the Aeroacoustic Sources in a Tandem Cylinder Configuration
,”
ASME
Paper No. PVP2009-77757.
38.
Finnegan
,
S. L.
,
Meskell
,
C.
, and
Ziada
,
S.
,
2010
, “
Experimental Investigation of the Acoustic Power around Two Tandem Cylinders
,”
ASME J. Pressure Vessel Technol.
,
132
(
4
), p.
041306
.
39.
Martínez-Lera
,
P.
,
Schram
,
C.
,
Föller
,
S.
,
Kaess
,
R.
, and
Polifke
,
W.
,
2009
, “
Identification of the Aeroacoustic Response of a Low Mach Number Flow Through a T-Joint
,”
J. Acoust. Soc. Am.
,
126
(
2
), pp.
582
586
.
40.
Mohany
,
A.
, and
Ziada
,
S.
,
2009
, “
Numerical Simulation of the Flow-Sound Interaction Mechanisms of a Single and Two-Tandem Cylinders in Cross-Flow
,”
ASME J. Pressure Vessel Technol.
,
131
(
3
), p.
031306
.
41.
Nakibog˘lu
,
G.
, and
Hirschberg
,
A.
,
2010
, “
A Numerical Study of the Aeroacoustic Interaction of a Cavity With a Confined Flow: Effect of Edge Geometry in Corrugated Pipes
,”
ASME
Paper No. FEDSM-ICNMM2010-30300.
42.
Föller
,
S.
,
Polifke
,
W.
, and
Tonon
,
D.
,
2010
, “
Aeroacoustic Characterization of T-Junctions Based on Large Eddy Simulation and System Identification
,”
AIAA
Paper No. 2010-3985.
43.
Nakı̇boğlu
,
G.
,
Manders
,
H. B. M.
, and.
Hirschberg
,
A.
,
2012
, “
Aeroacoustic Power Generated by a Compact Axisymmetric Cavity: Prediction of Self-Sustained Oscillation and Influence of the Depth
,”
J. Fluid Mech.
,
703
, pp.
163
191
.
44.
White
,
F. M.
, and
Corfield
,
I.
,
2006
,
Viscous Fluid Flow
,
McGraw-Hill
,
Boston, MA
.
45.
Doherty
,
J.
,
Monty
,
J.
, and
Chong
,
M.
,
2007
, “
The Development of Turbulent Pipe Flow
,”
16th Australasian Fluid Mechanics Conference
, Gold Coast, Australia, Dec. 2–7, pp.
266
270
.https://people.eng.unimelb.edu.au/imarusic/proceedings/16/Doherty.pdf
46.
Mohamed
,
S.
,
2015
, “
Sound Waves Excitation by Flow in a Pipe Housing a Shallow Cavity
,”
Ph.D. thesis
, McMaster University, Hamilton, ON, Canada.https://macsphere.mcmaster.ca/handle/11375/18288
47.
Laufer
,
J.
,
1954
, “
The Structure of Turbulence in Fully Developed Pipe Flow
,” National Advisory Committee for Aeronautics, Washington, DC, Report No. NACA-TR-1174.
48.
Munjal
,
M. L.
,
1987
,
Acoustics of Ducts and Mufflers With Application to Exhaust and Ventilation System Design
,
Wiley
, Hoboken, NJ.
49.
Cramer
,
O.
,
1993
, “
The Variation of the Specific Heat Ratio and the Speed of Sound in Air With Temperature, Pressure, Humidity, and CO2 Concentration
,”
J. Acoust. Soc. Am.
,
93
(
5
), pp.
2510
2516
.
50.
Davies
,
P. O. A. L.
,
1988
, “
Practical Flow Duct Acoustics
,”
J. Sound Vib.
,
124
(
1
), pp.
91
115
.
51.
Karal
,
F. C.
,
1953
, “
The Analogous Acoustical Impedance for Discontinuities and Constrictions of Circular Cross Section
,”
J. Acoust. Soc. Am.
,
25
(
2
), pp.
327
334
.
52.
Kergomard
,
J.
, and
Garcia
,
A.
,
1987
, “
Simple Discontinuities in Acoustic Waveguides at Low Frequencies: Critical Analysis and Formulae
,”
J. Sound Vib.
,
114
(
3
), pp.
465
479
.
You do not currently have access to this content.