During the firing of guns, the barrel undergoes two major damaging processes: wear of its inner surface and internal cracking. Barrel's are condemned based on either the increase of their internal diameter due to wear or the severity of their internal cracking. The cost of replacing such a damaged gun barrel runs in the tenth of thousands of U.S.$. Therefore, cost effective methods are sought for restoring such gun barrels. In the present analysis, a new method is proposed for refurbishing vintage gun barrels by machining their inner damaged layer and replacing it by an intact, autofrettaged, shrink-fit liner that will restore the barrel to its original performance. The design of the shrink-fitted liner is based on two design principles. First, the von-Mises residual stress distribution through the thickness of the barrel at each of its cross sections along the inserted liner should be at least equal in magnitude to von Mises stress, which prevailed in the original barrel. Second, once the maximum pressure is applied to the compound barrel, the von-Mises stresses at the inner surfaces of the liner machined barrel should be equal to their respective yield stresses. The preliminary results demonstrate the ability of this process to mend such barrels and bringing them back to their initial safe maximum pressure (SMP) and their intact conditions, rather than condemn them. Furthermore, from the authors' experience, based on a preliminary rough estimate, such an alternative seems to be cost effective.

References

References
1.
Seely
,
F.
, and
Smith
,
J.
,
1965
,
Advanced Mechanics of Materials
,
2nd ed.
,
Wiley
,
New York
.
2.
Hasenbein
,
R. G.
,
2004
, “
Wear and Erosion in Large Caliber Gun Barrels
,” Benet R&E Laboratories, Watervliet, NY, Paper No.
RTO-MP-AVT-109
.
3.
Kapp
,
J. A.
,
Fujczak
,
R. R.
,
Witherell
,
M. D.
,
Hickey
,
T. M.
, and
Zalinka
,
J. J.
,
1990
, “
Fracture Mechanics Assessment of a Cracked 16-Inch Inner Diameter 1945 Vintage-Jacketed Pressure Vessel
,” Benet R&E Laboratories, Watervliet, NY, Report No.
ARCCB-TR-90003
.
4.
Parker
,
A. P.
, and
Kendall
,
D. P.
,
2001
, “
Residual Stresses and Lifetimes of Tubes Subjected to Shrink Fit Prior to Autofrettage
,”
ASME J. Pressure Vessel Technol.
,
125
(
3
), pp.
282
286
.
5.
Jahed
,
H.
,
Farshi
,
B.
, and
Karimi
,
M.
,
2006
, “
Optimum Autofrettage and Shrink-Fit Combination in Multi-Layer Cylinders
,”
ASME J. Pressure Vessel Technol.
,
128
(
2
), pp.
196
200
.
6.
Chakrabarty
,
J.
,
1987
,
Theory of Plasticity
,
McGraw-Hill
,
New York
.
7.
Perry
,
J.
, and
Perl
,
M.
,
2008
, “
The Evaluation of the 3-D Residual Stress Field Due to Hydraulic Autofrettage in a Finite Length Cylinder Incorporating the Bauschinger Effect Factor Based on the ‘Zero Offset Yield Stress
,”
ASME
Paper No. PVP2008-61032.
8.
Perry
,
J.
, and
Perl
,
M.
,
2008
, “
A 3-D Model for Evaluating the Residual Stress Field Due to Swage Autofrettage
,”
ASME J. Pressure Vessel Technol.
,
130
(
4
), p.
0412116
.
9.
Perl
,
M.
, and
Perry
,
J.
,
2006
, “
An Experimental-Numerical Determination of the Three-Dimensional Autofrettage Residual Stress Field Incorporating Bauschinger Effect
,”
ASME J. Pressure Vessel Technol.
,
128
(
2
), pp.
173
178
.
10.
Perry
,
J.
,
Perl
,
M.
,
Shneck
,
R.
, and
Haroush
,
S.
,
2006
, “
The Influence of the Bauschinger Effect on the Yield Stress, Young's Modulus, and Poisson's Ratio of a Gun Barrel Steel
,”
ASME J. Pressure Vessel Technol.
,
128
(
2
), pp.
179
184
.
You do not currently have access to this content.