Isobaric gas-tight hydrothermal samplers, with the ability to maintain pressure, can be used to keep in situ chemical and biological sample properties stable. The preloading pressure of the precharged gas is a major concern for isobaric gas-tight hydrothermal samplers, especially when the samplers are used at different sampling depths, where the in situ pressures and ambient temperatures vary greatly. The most commonly adopted solution is to set the preloading pressure for gas-tight samplers as 10% of the hydrostatic pressure at the sampling depth, which might emphasize too much on pressure retention; thereby, the sample volume may be unnecessarily reduced. The pressure transition of the precharged gas was analyzed theoretically and modeled at each sampling stage of the entire field application process. Additionally, theoretical models were built to represent the pressure and volume of hydrothermal fluid samples as a function of the preloading pressure of the precharged gas. Further, laboratory simulation and examination approaches were also adopted and compared, in order to obtain the volume change of the sample and accumulator chambers. By using theoretical models and the volume change of the two chambers, the optimized preloading pressure for the precharged gas was obtained. Under the optimized preloading pressure, the in situ pressure of the fluid samples could be maintained, and their volume was maximized. The optimized preloading pressure obtained in this study should also be applicable to other isobaric gas-tight hydrothermal samplers, by adopting a similar approach to pressure maintenance.

References

References
1.
Hannington
,
M.
,
2011
, “
Comments on ‘What Processes at Mid-Ocean Ridges Tell Us About Volcanogenic Massive Sulfide Deposits’ by L. M. Cathles
,”
Miner. Deposita
,
46
(5–6), pp.
659
663
.
2.
Beaulieu
,
S. E.
,
Baker
,
E. T.
,
German
,
C. R.
, and
Marrei
,
A.
,
2013
, “
An Authoritative Global Database for Active Submarine Hydrothermal Vent Fields
,”
Geochem. Geophys. Geosyst.
,
14
(
11
), pp.
4892
4905
.
3.
Thornburg
,
C. C.
,
Zabriskie
,
T. M.
, and
McPhail
,
K. L.
,
2010
, “
Deep-Sea Hydrothermal Vents: Potential Hot Spots for Natural Products Discovery
,”
J. Nat. Prod.
,
73
(
3
), pp.
489
499
.
4.
Baker
,
E. T.
, and
German
,
C. R.
,
2004
, “
On the Global Distribution of Mid-Ocean Ridge Hydrothermal Vent-Fields
,”
Am. Geophys. Union Geophys. Monograph.
, pp.
245
266
.https://eprints.soton.ac.uk/15419/
5.
Chen
,
C. T. A.
,
Zeng
,
Z. G.
,
Kuo
,
F. W.
,
Yang
,
T. Y. F.
,
Wang
,
B. J.
, and
Tu
,
Y. Y.
,
2005
, “
Tide-Influenced Acidic Hydrothermal System Offshore NE Taiwan
,”
Chem. Geol.
,
224
(
1
), pp.
69
81
.
6.
Connelly
,
D. P.
,
Copley
,
J. T.
,
Murton
,
B. J.
,
Stansfield
,
K.
,
Tyler
,
P. A.
,
German
,
C. R.
,
Dover
,
C. L. V.
,
Amon
,
D.
,
Furlong
,
M.
,
Grindlay
,
N.
,
Hayman
,
N.
,
Hühnerbach
,
V.
,
Judge
,
M.
,
Bas
,
T. L.
,
McPhail
,
S.
,
Meier
,
A.
,
Nakamura
,
K.
,
Nye
,
V.
,
Pebody
,
M.
,
Pedersen
,
R. B.
,
Plouviez
,
S.
,
Sands
,
C.
,
Searle
,
R. C.
,
Stevenson
,
P.
,
Taws
,
S.
, and
Wilcox
,
S.
, 2012, “
Hydrothermal Vent Fields and Chemosynthetic Biota on the World's Deepest Seafloor Spreading Centre
,”
Nature Commun.
,
3
, p. 620.
7.
James
,
R. H.
,
Green
,
D. R. H.
,
Stock
,
M. J.
,
Alker
,
B. J.
,
Banerjee
,
N. R.
,
Cole
,
C.
,
German
,
C. R.
,
Huvenne
,
V. A. I.
,
Powell
,
A. M.
, and
Connelly
,
D. P.
,
2014
, “
Composition of Hydrothermal Fluids and Mineralogy of Associated Chimney Material on the East Scotia Ridge Back-Arc Spreading Centre
,”
Geochim. Cosmochim. Ac
,
139
, pp.
47
71
.
8.
Mccollom
,
T. M.
,
Seewald
,
J. S.
, and
German
,
C. R.
,
2015
, “
Investigation of Extractable Organic Compounds in Deep-Sea Hydrothermal Vent Fluids Along the Mid-Atlantic Ridge
,”
Geochim. Cosmochim. Acta
,
156
, pp.
122
144
.
9.
Love
,
B.
,
Lilley
,
M.
,
Butterfield
,
D.
,
Olson
,
E.
, and
Larson
,
B.
,
2017
, “
Rapid Variations in Fluid Chemistry Constrain Hydrothermal Phase Separation at the Main Endeavour Field
,”
Geochem. Geophys. Geosyst.
,
18
(
2
), pp.
531
543
.
10.
Wu
,
Y.
,
Cao
,
Y.
,
Wu
,
M.
,
Aharon
,
O.
, and
Xu
,
X.
,
2014
, “
Microbial Community Structure and Nitrogenase Gene Diversity of Sediment From a Deep-Sea Hydrothermal Vent Field on the Southwest Indian Ridge
,”
Acta Oceanol. Sin.
,
33
(
10
), pp.
94
104
.
11.
Rossel
,
P. E.
,
Stubbins
,
A.
,
Rebling
,
T.
,
Koschinsky
,
A.
,
Hawkes
,
J. A.
, and
Dittmar
,
T.
,
2017
, “
Thermally Altered Marine Dissolved Organic Matter in Hydrothermal Fluids
,”
Org. Geochem.
,
110
, pp.
73
86
.
12.
Seewald
,
J. S.
,
Doherty
,
K. W.
,
Hammar
,
T. R.
, and
Liberatore
,
S. P.
,
2002
, “
A New Gas-Tight Isobaric Sampler for Hydrothermal Fluids
,”
Deep-Sea Res Part I
,
49
(
1
), pp.
189
196
.
13.
Chen
,
Y.
,
Wu
,
S.
,
Xie
,
Y.
,
Yang
,
C.
, and
Zhang
,
J.
,
2008
, “
A Novel Mechanical Gas-Tight Sampler for Hydrothermal Fluids
,”
IEEE J. Oceanic Eng.
,
32
(
3
), pp.
603
608
.
14.
Oin
,
H. W.
,
Hu
,
H. M.
,
Ye
,
W.
,
Wang
,
J. J.
,
Cai
,
Z.
, and
Chen
,
Y.
, 2014, “
Reliability Assessment of the Water Distributing Valve of a Hydrostatic Sediment Corer
,”
ASME J. Pressure Vessel Technol.
,
136
(6), p. 061601.
15.
Giancoli
,
D. C.
,
2000
, “
Physics for Scientists and Engineers Third Edition
,”
Phys. Educ.
,
35
(
5
), pp.
370
371
.
You do not currently have access to this content.