Fatigue design method for 2.25Cr-1Mo-V steel reactors in code case 2605 (CC 2605) is reviewed. Main factors such as the accelerating function of fatigue action, the cyclic frequency, the strain damage factor (β) related to the fatigue design curves are addressed, and the applicable stress level for pure creep rupture analysis in CC 2605 is also discussed. Results indicate that, for the high loading levels, the accelerating function of fatigue action and strain damage factor contribute relatively remarkably to the fatigue design curve. The increase of cyclic frequency leads to a remarkable increase of the allowable fatigue cycle number and hence reduces the conservativeness of fatigue design curve. It should be stipulated in CC 2605 that the applicable stress level is higher than a value of around 200 MPa (slightly dependent on temperature) for the adjusted uniaxial Omega damage parameter and 16 MPa for the creep strain rate when the Omega creep-damage method is employed.

References

References
1.
Gong
,
J. G.
, and
Xuan
,
F. Z.
,
2017
, “
Notch Behavior of Components Under the Stress-Controlled Creep-Fatigue Condition: Weakening or Strengthening?
,”
ASME J. Pressure Vessel Technol.
,
139
(
1
), p.
011407
.
2.
Barbera
,
D.
,
Chen
,
H.
,
Liu
,
Y.
, and
Xuan
,
F. Z.
,
2017
, “
Recent Developments of the Linear Matching Method Framework for Structural Integrity Assessment
,”
ASME J. Pressure Vessel Technol.
,
139
(
5
), p.
051101
.
3.
Coffin
,
L. F.
,
1976
, “
The Concept of Frequency Separation Methods in Life Prediction for Time-Dependent Fatigue
,”
ASME-MPC Symposium on Creep-Fatigue Interaction
(MPC-3), pp.
346
363
.
4.
Manson
,
S.
,
Halford
,
G.
, and
Hirschberg
,
M.
,
1971
, “
Creep-Fatigue Analysis by Strain-Range Partitioning
,” Symposium on Design for Elevated Temperature Environment
, San Francisco, CA, May 10–12, pp.
12
28
.https://ntrs.nasa.gov/search.jsp?R=19720039532
5.
He
,
J.
,
Duan
,
Z.
,
Ning
,
Y.
, and
Zhao
,
D.
,
1983
, “
Strain Energy Partitioning and Its Application to GH33A Nickel-Base Superalloy and 1Cr-18Ni-9Ti Stainless Steel
,” ASME International Conference on Advances in Life Prediction Methods, Albany, NY, Apr. 18–20, pp. 27–32.
6.
Zhuang
,
W. Z.
, and
Swansson
,
N. S.
,
1998
, “
Thermo-Mechanical Fatigue Life Prediction: A Critical Review
,” Aeronautical and Maritime Research Lab, Melbourne, Australia, Report No.
DSTO-TR-0609
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.504.3406&rep=rep1&type=pdf
7.
Prager
,
M.
,
2009
, “
Extend Low Chrome Steel Fatigue Rules
,” American Society of Mechanical Engineers, New York, Standard No. STP-PT-027.
8.
ASME
,
2017
, “
Cases of ASME Boiler and Pressure Vessel Code, Case 2605
,” American Society of Mechanical Engineers, New York.
9.
Panwala
,
M. S. M.
,
Desai
,
D. H.
, and
Mehta
,
S. L.
,
2010
, “
An Approach Based on Code Case 2605 for Fatigue Evaluation of Vanadium Modified Materials Reactor
,”
ASME
Paper No. PVP2010-25720.
10.
Terada
,
S.
,
2013
, “
Application of Code Case 2605 for Fatigue Evaluation of Vessels Made in 2.25 Cr-1Mo-0.25 V Steels Slightly Into Creep Range
,”
ASME J. Pressure Vessel Technol.
,
135
(
4
), p.
041401
.
11.
Zhao
,
M.
,
2010
, “
Coupled Creep Fatigue Analysis on 2-1/4 Cr-1Mo-V Pressure Components Per Code Case 2605
,”
ASME
Paper No. PVP2010-25711.
12.
Stefanovic
,
R.
,
Avery
,
A.
,
Bardia
,
K.
,
Kabganian
,
R.
,
Oprea
,
V.
, and
Seipp
,
T.
,
2013
, “
User's Design Specification Preparation for 2¼Cr-1Mo-¼V Reactors in Accordance With ASME Section VIII, Division 2 Code and Code Case 2605
,”
ASME
Paper No. PVP2013-97720.
13.
Terada
,
S.
,
Yamada
,
M.
, and
Nakanishi
,
T.
,
2015
, “
Proposed Code Case of Creep Fatigue Evaluation of 9Cr-1Mo-V Steels for High Pressure Vessels in ASME Section VIII Division 2
,”
ASME
Paper No. PVP2015-45327.
14.
Takehana
,
T.
,
Sano
,
T.
,
Terada
,
S.
, and
Kobayashi
,
H.
,
2004
, “
Proposal for the Implementation of Elevated Temperature Design Fatigue Curve for 2-1/4Cr-1Mo-V and 3Cr-1Mo-V Steels
,”
ASME
Paper No. PVP2004-2271.
15.
Chopra
,
O. K.
, and
Shack
,
W. J.
,
2003
, “
Review of the Margins for ASME Code Fatigue Design Curve-Effects of Surface Roughness and Material Variability
,” Argonne National Laboratory (ANL), Chicago, IL, Report No.
ANL-02/39
.https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6815/cr6815.pdf
16.
Prager
,
M.
,
1995
, “
Development of the MPC Omega Method for Life Assessment in the Creep Range
,”
ASME J. Pressure Vessel Technol.
,
117
(2), pp.
95
103
.
17.
Prager
,
M.
,
2000
, “
The Omega Method-An Engineering Approach to Life Assessment
,”
ASME J. Pressure Vessel Technol.
,
122
(
3
), pp.
273
280
.
18.
API
,
2007
, “
Fitness-For-Service
,” American Petroleum Institute, Houston, TX, Standard No.
API 579-1/ASME FFS-1
.http://www.asme.org/products/courses/api-5791asme-ffs1-fitness-service-evaluation
19.
Ramberg
,
W.
, and
Osgood
,
W. R.
,
1943
, “
Description of Stress–Strain Curves by Three Parameters
,” National Advisory Committee for Aeronautics, Washington, DC, Technical Note No.
NACA-TN-902
.https://ntrs.nasa.gov/search.jsp?R=19930081614
20.
Endo
,
T.
, and
Sakon
,
T.
,
1984
, “
Creep-Fatigue Life Prediction Using Simple High-Temperature Low-Cycle Fatigue Testing Machines
,”
Met. Technol.
,
11
(
1
), pp.
489
496
.
21.
Tian
,
Y.
,
Yu
,
D.
,
Zhao
,
Z.
,
Chen
,
G.
, and
Chen
,
X.
,
2016
, “
Low Cycle Fatigue and Creep-Fatigue Interaction Behaviour of 2.25 Cr1MoV Steel at Elevated Temperature
,”
Mater. High Temp.
,
33
(
1
), pp.
75
84
.
22.
NIMS
,
2004
, “
NIMS Materials Database
,” Natural Institute of Materials Science, Tsukuba, Japan.
23.
Kobayashi
,
H.
,
Todoroki
,
A.
,
Oomura
,
T.
,
Sano
,
T.
, and
Takehana
,
T.
,
2006
, “
Ultra-High-Cycle Fatigue Properties and Fracture Mechanism of Modified 2.25Cr-1Mo Steel at Elevated Temperatures
,”
Int. J. Fatigue
,
28
(
11
), pp.
1633
1639
.
24.
Wu
,
X. Y.
,
Zhao
,
Z. Z.
, and
Chen
,
X.
,
2015
, “
A Design Approach for Creep Fatigue Evaluation of Hydrogenation Reactor Made of 2.25Cr1MoV Steel
,”
J. Mech. Eng.
,
51
(
6
), pp.
51
57
(in Chinese).
You do not currently have access to this content.