Burst pressure models are used for the fitness-for-purpose assessment of energy pipelines. Existing burst pressure models for corroded pipelines are unable to predict the pipe capacity correctly. In this paper, an improved burst pressure model is developed for corroded pipelines considering the burst pressure of flawless pipes and a reduction factor due to corrosion separately. The equation for the burst pressure of flawless pipe is revised based on the theory of the thick wall cylinder. A new model for the Folias factor is proposed for calculating the reduction factor. The new model for the Folias factor incorporates the depth of corrosion defect, whereas the existing models do not account for the effect of the defect depth. The authors' earlier work revealed that the Folias factor depends on the depth of defect. The proposed burst model reasonably predicts the burst pressures obtained from finite element (FE) analysis conducted in this study and the burst test results available in the published literature.

References

References
1.
Kiefner
,
J. F.
, and
Vieth
,
P. H.
,
1989
, “A Modified Criteria for Evaluating the Remaining Strength of Corroded Pipe,” American Gas Association, Washington, DC, Final Report No. PR 3-805.
2.
ASME,
2012
, “Manual for Determining the Remaining Strength of Corroded Pipelines,” American Society of Mechanical Engineers, New York, Standard No.
B31G-2012
.https://law.resource.org/pub/us/cfr/ibr/002/asme.b31g.1991.pdf
3.
DNV,
2015
, “Corroded Pipelines,” Det Norske Veritas, Oslo, Norway, Standard No.
DNV-RP-F101
.https://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2010-10/RP-F101.pdf
4.
BSI,
2013
, “Guide to Methods for Assessing the Acceptability of Flows in Metallic Structure,” British Standard Institution, London, Standard No.
BS 7910
.https://shop.bsigroup.com/ProductDetail/?pid=000000000030346068
5.
CSA,
2015
, “Oil and Gas Pipeline Systems,” Canadian Standard Association, Mississauga, ON, Canada, Standard No.
Z662-15
.http://shop.csa.ca/en/canada/petroleum-and-natural-gas-industry-systems/cancsa-z662-15-/invt/27024912015
6.
Mondal
,
B. C.
, and
Dhar
,
A. S.
,
2016
, “
Finite-Element Evaluation of Burst Pressure Models for Corroded Pipelines
,”
ASME J. Pressure Vessel Technol.
,
139
(
2
), p. 021702.
7.
Folias
,
E. S.
,
1964
, “The Stresses in a Cylindrical Shell Containing an Axial Crack,” Aerospace Research Laboratories, U.S. Air Force, OH, Report No.
ARL 64-174
.http://www.dtic.mil/docs/citations/AD0609669
8.
Folias
,
E. S.
,
1973
, “
Thin Shell Structures
,”
Fracture in Pressure Vessels
,
Y. C.
Fung
and
E. E.
Schler
, eds.,
Prentice-Hall
,
Upper Saddle River, NJ
, pp.
483
518
.
9.
Mondal
,
B. C.
, and
Dhar
,
A. S.
,
2016
, “
Burst Pressure Assessment for Pipelines With Multiple Corrosion Defects
,”
Fifth International Structural Specialty Conference
, London, ON, Canada, June 1–4, Paper No.
STR-953-1
.https://ir.lib.uwo.ca/cgi/viewcontent.cgi?referer=https://www.google.co.in/&httpsredir=1&article=1199&context=csce2016
10.
Diniz
,
J. L. C.
,
Vieira
,
R. D.
,
Castro
,
J. T.
,
Benjamin
,
A. C.
, and
Freire
,
J. L. F.
,
2006
, “
Stress and Strain Analysis of Pipelines With Localized Metal Loss
,”
Exp. Mech.
,
46
(
6
), pp.
765
775
.
11.
Li
,
X.
,
Bai
,
Y.
,
Su
,
C.
, and
Li
,
M.
,
2016
, “
Effect of Interaction Between Corrosion Defects on Failure Pressure of Thin Wall Steel Pipeline
,”
Int. J. Pressure Vessels Piping
,
138
, pp.
8
18
.
12.
Oh
,
C. K.
,
Kim
,
Y. J.
,
Baek
,
J. H.
,
Kim
,
Y. P.
, and
Kim
,
W. S.
,
2007
, “
Ductile Failure Analysis of API X65 Pipes With Notch-Type Defects Using a Local Fracture Criterion
,”
Int. J. Pressure Vessels Piping
,
84
(
8
), pp.
512
525
.
13.
Chiodo
,
M. S. G.
, and
Ruggieri
,
C.
,
2009
, “
Failure Assessments of Corroded Pipelines With Axial Defects Using Stress-Based Criteria: Numerical Studies and Verification Analyses
,”
Int. J. Pressure Vessels Piping
,
86
(
2–3
), pp.
164
176
.
14.
Fekete
,
G.
, and
Varga
,
L.
,
2012
, “
The Effect of the Width to Length Ratios of Corrosion Defects on the Burst Pressures of Transmission Pipelines
,”
J. Eng. Failure Anal.
,
21
, pp.
21
30
.
15.
Benjamin
,
A. C.
,
Freire
,
J. L. F.
,
Vieira
,
R. D.
,
de Diniz
,
J. L. C.
, and
Andrade
,
E. Q. D.
,
2005
, “Burst Tests on Pipeline Containing Interacting Corrosion Defects,”
ASME
Paper No. OMAE2005-67059.
16.
Phan
,
H.
,
Dhar
,
A.
, and
Mondal
,
B. C.
,
2017
, “
Revisiting Burst Pressure Models for Corroded Pipelines
,”
Can. J. Civil Eng.
,
44
(7), pp. 485–494.
17.
Hearn
,
E. J.
,
1997
,
Mechanics of Materials
(An Introduction to the Mechanics of Elastic and Plastic Deformation of Solids and Structural Materials), Vol.
1
,
3rd ed.
,
Butterworth-Heinemann
,
Oxford, UK
, pp.
215
221
.
18.
Cronin
,
D. S.
, and
Pick
,
R. J.
,
2000
, “Experimental Database for Corroded Pipe: Evaluation of RSTRENG and B31G,”
ASME
Paper No. IPC2000-190.
19.
Freire
,
J. L. F.
,
Vieira
,
R. D.
,
Castro
,
J. T. P.
, and
Benjamin
,
A. C.
,
2006
, “
A Series on Applications of Experimental Techniques in the Field of Pipeline Integrity—Part 3: Burst Tests Pipeline With Extensive Longitudinal Metal Loss
,”
Exp. Tech.
,
30
(
6
), pp.
60
65
.
20.
Kim
,
Y. P.
,
Lee
,
Y. K.
,
Kim
,
W. S.
, and
Oh
,
K. H.
,
2004
, “The Evaluation of Failure Pressure for Corrosion Defects Within Girth or Seam Weld in Transmission Pipelines,”
ASME
Paper No. IPC2004-0216.
21.
Chen
,
Y.
,
Zhang
,
H.
,
Zhang
,
J.
,
Li
,
X.
, and
Zhou
,
J.
,
2015
, “
Failure Analysis of High Strength Pipeline With Single and Multiple Corrosions
,”
J. Mater. Des.
,
67
, pp.
552
557
.
22.
Sadasue
,
T.
,
Kubo
,
T.
,
Glover
,
A.
,
Ishikawa
,
N.
,
Horsley
,
D.
,
Igi
,
S.
,
Endo
,
S.
, and
Toyoda
,
M.
,
2004
, “Ductile Cracking Evaluation of X80/X100 High Strength Linepipes,”
ASME
Paper No. IPC2004-0249.
23.
Ma
,
B.
,
Shuai
,
J.
,
Liu
,
D.
, and
Xu
,
K.
,
2013
, “
Assessment on Failure Pressure of High Strength Pipeline With Corrosion Defects
,”
Eng. Failure Anal.
,
32
, pp.
209
219
.
You do not currently have access to this content.