An integrative numerical simulation approach for pipeline integrity analysis is presented in this work, combining a corrosion model, which is the main focus of this paper, with a complementary structural nonlinear stress analysis, using the finite element method (FEM). Potential distributions in the trapped water existing beneath pipeline coating disbondments are modeled in conjunction with reaction kinetics on the corroding exposed steel surface using a moving boundary mesh. Temperature dependencies (25 °C and 50 °C) of reaction kinetics do not greatly affect final corrosion defect geometries after 3-yr simulation periods. Conversely, cathodic protection (CP) levels and pH dependencies within the near-neutral pH range (6.7–8.5) strongly govern depth profiles caused by corrosion, reaching a maximum of ∼3 mm into the pipeline wall. A 0.25 V amplification of CP potential combined with a 0.5 mm widening in disbondment opening size reduces defect penetration by almost 30%. Resulting corrosion defect geometries are used for stress examinations and burst pressure evaluations. Furthermore, nonlinear elastic–plastic stress analysis is carried out using shell elements in order to predict the burst pressure of corroded pipes. Corrosion is modeled by reducing the stiffness of a damaged element that has the dimensions of the defect. The predicted burst pressures are in good agreement with those obtained using an experimental-based formula.

References

References
1.
ASME
,
2012
, “
Manual for Determining the Remaining Strength of Corroded Pipelines (Supplement to ANSI/ASME b31 Code for Pressure Piping)
,” American Society of Mechanical Engineers, New York, Standard No.
B31G-2012
.http://files.asme.org/Catalog/Codes/PrintBook/33501.pdf
2.
Kiefner
,
J. F.
, and
Vieth
,
P. H.
,
1990
, “
Evaluating Pipe–1. New Method Corrects Criterion for Evaluating Corroded Pipe
,”
Oil Gas J.
,
88
(
32
).http://www.ogj.com/articles/print/volume-88/issue-32/in-this-issue/general-interest/evaluating-pipe-1-new-method-corrects-criterion-for-evaluating-corroded-pipe.html
3.
Kiefner
,
J. F.
, and
Vieth
,
P. H.
,
2016
, “
Evaluating Pipe-Conclusion PC Program Speeds New Criterion for Evaluating Corroded Pipe
,”
Oil Gas J.
,
88
(
32
).http://www.ogj.com/articles/print/volume-88/issue-34/in-this-issue/production/evaluating-pipe-conclusion-pc-program-speeds-new-criterion-for-evaluating-corroded-pipe.html
4.
Netto
,
T. A.
,
Ferraz
,
U. S.
, and
Estefen
,
S. F.
,
2005
, “
The Effect of Corrosion Defects on the Burst Pressure of Pipelines
,”
J. Constr. Steel Res.
,
61
(
8
), pp.
1185
1204
.
5.
Fekete
,
G.
, and
Varga
,
L.
,
2012
, “
The Effect of the Width to Length Ratios of Corrosion Defects on the Burst Pressures of Transmission Pipelines
,”
Eng. Failure Anal.
,
21
, pp.
21
30
.
6.
Chiodo
,
M. S. G.
, and
Ruggieri
,
C.
,
2009
, “
Failure Assessments of Corroded Pipelines With Axial Defects Using Stress-Based Criteria: Numerical Studies and Verification Analyses
,”
Int. J. Pressure Vessels Piping
,
86
(
2–3
), pp.
164
176
.
7.
Dotta
,
F.
, and
Ruggieri
,
C.
,
2004
, “
Structural Integrity Assessments of High Pressure Pipelines With Axial Flaws Using a Micromechanics Model
,”
Int. J. Pressure Vessels Piping
,
81
(
9
), pp.
761
770
.
8.
Government of Canada
,
2002
, “
Public Inquiry Concerning Stress Corrosion Cracking on Canadian Oil and Gas Pipelines
,” Public Works and Government Services Canada, Ottawa, ON, Canada, accessed Oct. 18, 2013, http://publications.gc.ca/site/eng/418383/publication.html
9.
Lu
,
B. T.
,
Luo
,
J. L.
, and
Norton
,
P. R.
,
2010
, “
Environmentally Assisted Cracking Mechanism of Pipeline Steel in Near-Neutral pH Groundwater
,”
Corros. Sci.
,
52
(
5
), pp.
1787
1795
.
10.
Benmoussa
,
A.
,
Hadjel
,
M.
, and
Traisnel
,
M.
,
2006
, “
Corrosion Behavior of API 5 L X-60 Pipeline Steel Exposed to Near-Neutral pH Soil Simulating Solution
,”
Mater. Corros.
,
57
(
10
), pp.
771
777
.
11.
Gadala
,
I. M.
, and
Alfantazi
,
A.
,
2014
, “
Electrochemical Behavior of API-X100 Pipeline Steel in NS4, Near-Neutral, and Mildly Alkaline pH Simulated Soil Solutions
,”
Corros. Sci.
,
82
, pp.
45
57
.
12.
He
,
D. X.
,
Chen
,
W.
, and
Luo
,
J. L.
,
2004
, “
Effect of Cathodic Potential on Hydrogen Content in a Pipeline Steel Exposed to NS4 Near-Neutral pH Soil Solution
,”
Corrosion
,
60
(
8
), pp.
778
786
.
13.
Chen
,
W.
,
Kania
,
R.
,
Worthingham
,
R.
, and
Boven
,
G. V.
,
2009
, “
Transgranular Crack Growth in the Pipeline Steels Exposed to Near-Neutral pH Soil Aqueous Solutions: The Role of Hydrogen
,”
Acta Mater.
,
57
(
20
), pp.
6200
6214
.
14.
Gu
,
B.
,
Yu
,
W. Z.
,
Luo
,
J. L.
, and
Mao
,
X.
,
1999
, “
Transgranular Stress Corrosion Cracking of X-80 and X-52 Pipeline Steels in Dilute Aqueous Solution With Near-Neutral pH
,”
Corrosion
,
55
(
3
), pp.
312
318
.
15.
Parkins
,
R. N.
,
Blanchard
,
W. K.
, and
Delanty
,
B. S.
,
1994
, “
Transgranular Stress Corrosion Cracking of High-Pressure Pipelines in Contact With Solutions of Near Neutral pH
,”
Corrosion
,
50
(
5
), pp.
394
408
.
16.
Yan
,
L.
,
Worthingham
,
R.
,
King
,
F.
, and
Been
,
J.
,
2012
, “
Factors Affecting the Generation of High-pH Environments Required for Stress Corrosion Cracking (SCC)
,”
ASME
Paper No. IPC2012-90515.
17.
Cheng
,
Y. F.
,
2007
, “
Fundamentals of Hydrogen Evolution Reaction and Its Implications on Near-Neutral pH Stress Corrosion Cracking of Pipelines
,”
Electrochim. Acta
,
52
(
7
), pp.
2661
2667
.
18.
Revie
,
R. W.
,
2015
,
Oil and Gas Pipelines: Integrity and Safety Handbook
,
Wiley
,
Hoboken, NJ
.
19.
Bai
,
Y.
, and
Bai
,
Q.
,
2014
, “
Corrosion and Corroded Pipelines
,”
Subsea Pipeline Integrity and Risk Management
,
Y. B.
Bai
, ed.,
Gulf Professional Publishing
,
Waltham, MA
, Chap. 1.
20.
Durr
,
C. L.
, and
Beavers
,
J. A.
,
1998
, “
Techniques for Assessment of Soil Corrosivity
,” CORROSION, San Diego, CA, Mar. 22–27,
SPE
Paper No. NACE-98667.https://www.onepetro.org/conference-paper/NACE-98667
21.
Jones
,
D. A.
,
1995
,
Principles and Prevention of Corrosion
,
2nd ed.
,
Prentice Hall
,
Upper Saddle River, NJ
.
22.
Rabiot
,
D.
,
Dalard
,
F.
,
Rameau
,
J.-J.
,
Caire
,
J.-P.
, and
Boyer
,
S.
,
1999
, “
Study of Sacrificial Anode Cathodic Protection of Buried Tanks: Numerical Modelling
,”
J. Appl. Electrochem.
,
29
(
5
), pp.
541
550
.
23.
Miltiadou
,
P.
, and
Wrobel
,
L. C.
,
2002
, “
Optimization of Cathodic Protection Systems Using Boundary Elements and Genetic Algorithms
,”
Corrosion
,
58
(
11
), pp.
912
921
.
24.
Martinez
,
S.
, and
Štern
,
I.
,
2000
, “
A Mathematical Model for the Internal Cathodic Protection of Cylindrical Structures by Wire Anodes
,”
J. Appl. Electrochem.
,
30
(
9
), pp.
1053
1060
.
25.
Gadala
,
I. M.
,
Abdel Wahab
,
M.
, and
Alfantazi
,
A.
,
2016
, “
Numerical Simulations of Soil Physicochemistry and Aeration Influences on the External Corrosion and Cathodic Protection Design of Buried Pipeline Steels
,”
Mater. Des.
,
97
, pp.
287
299
.
26.
Perdomo
,
J. J.
,
Chabica
,
M. E.
, and
Song
,
I.
,
2001
, “
Chemical and Electrochemical Conditions on Steel Under Disbonded Coatings: The Effect of Previously Corroded Surfaces and Wet and Dry Cycles
,”
Corros. Sci.
,
43
(
3
), pp.
515
532
.
27.
Nešić
,
S.
, and
Lee
,
K.-L. J.
,
2003
, “
A Mechanistic Model for Carbon Dioxide Corrosion of Mild Steel in the Presence of Protective Iron Carbonate Films—Part 3: Film Growth Model
,”
Corrosion
,
59
(
7
), pp.
616
628
.
28.
Song
,
F. M.
,
Kirk
,
D. W.
,
Graydon
,
J. W.
, and
Cormack
,
D. E.
,
2004
, “
Predicting Carbon Dioxide Corrosion of Bare Steel Under an Aqueous Boundary Layer
,”
Corrosion
,
60
(
8
), pp.
736
748
.
29.
Riemer
,
D. P.
, and
Orazem
,
M. E.
,
2000
, “
Application of Boundary Element Models to Predict Effectiveness of Coupons for Accessing Cathodic Protection of Buried Structures
,”
Corrosion
,
56
(
8
), pp.
794
800
.
30.
Muehlenkamp
,
E. B.
,
Koretsky
,
M. D.
, and
Westall
,
J. C.
,
2005
, “
Effect of Moisture on the Spatial Uniformity of Cathodic Protection of Steel in Reinforced Concrete
,”
Corrosion
,
61
(
6
), pp.
519
533
.
31.
Nafisi
,
S.
,
Arafin
,
M.
,
Glodowski
,
R.
,
Collins
,
L.
, and
Szpunar
,
J.
,
2014
, “
Impact of Vanadium Addition on API X100 Steel
,”
ISIJ Int.
,
54
(
10
), pp.
2404
2410
.
32.
G01 Committee
,
2011
, “
Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM G1-03(2011)
.https://www.astm.org/Standards/G1.htm
33.
Meng
,
G. Z.
,
Zhang
,
C.
, and
Cheng
,
Y. F.
,
2008
, “
Effects of Corrosion Product Deposit on the Subsequent Cathodic and Anodic Reactions of X-70 Steel in Near-Neutral pH Solution
,”
Corros. Sci.
,
50
(
11
), pp.
3116
3122
.
34.
TransCanada,
2013
, “
Pipeline Temperature Effects Study—Keystone XL Project
,”
TransCanada Corporation
, Calgary, AB, Canada.https://2012-keystonepipeline-xl.state.gov/documents/organization/205567.pdf
35.
Gulf Interstate Engineering
,
1998
, “Temporary Right-of-Way Width Requirements for Pipeline Construction,”
Interstate Natural Gas Association of America Foundation
,
Houston, TX
.http://www.ingaa.org/File.aspx?id=19105
36.
Kranc
,
S. C.
, and
Sagüés
,
A. A.
,
2001
, “
Detailed Modeling of Corrosion Macrocells on Steel Reinforcing in Concrete
,”
Corros. Sci.
,
43
(
7
), pp.
1355
1372
.
37.
Campbell
,
G. S.
,
Jungbauer
,
J. D. J.
,
Bidlake
,
W. R.
, and
Hungerford
,
R. D.
,
1994
, “
Predicting the Effect of Temperature on Soil Thermal Conductivity
,”
Soil Sci.
,
158
(
5
), pp.
307
313
.
38.
Eslami
,
A.
,
Kania
,
R.
,
Worthingham
,
B.
,
Boven
,
G. V.
,
Eadie
,
R.
, and
Chen
,
W.
,
2013
, “
Corrosion of X-65 Pipeline Steel Under a Simulated Cathodic Protection Shielding Coating Disbondment
,”
Corrosion
,
69
(
11
), pp.
1103
1110
.
39.
Eslami
,
A.
,
Fang
,
B.
,
Kania
,
R.
,
Worthingham
,
B.
,
Been
,
J.
,
Eadie
,
R.
, and
Chen
,
W.
,
2010
, “
Stress Corrosion Cracking Initiation Under the Disbonded Coating of Pipeline Steel in Near-Neutral pH Environment
,”
Corros. Sci.
,
52
(
11
), pp.
3750
3756
.
40.
Eslami
,
A.
,
Kania
,
R.
,
Worthingham
,
B.
,
Boven
,
G. V.
,
Eadie
,
R.
, and
Chen
,
W.
,
2011
, “
Effect of CO2 and R-Ratio on near-Neutral pH Stress Corrosion Cracking Initiation Under a Disbonded Coating of Pipeline Steel
,”
Corros. Sci.
,
53
(
6
), pp.
2318
2327
.
41.
Frankel
,
G. S.
,
1998
, “
Pitting Corrosion of Metals a Review of the Critical Factors
,”
J. Electrochem. Soc.
,
145
(
6
), pp.
2186
2198
.
42.
ASM International
,
2000
,
Corrosion: Understanding the Basics
,
R.
Davis
, ed.,
ASM International
,
Materials Park, OH
.
43.
Kranc
,
S. C.
, and
Sagüés
,
A. A.
,
1994
, “
Computation of Reinforcing Steel Corrosion Distribution in Concrete Marine Bridge Substructures
,”
Corrosion
,
50
(
1
), pp.
50
61
.
44.
Stern
,
M.
, and
Geary
,
A. L.
,
1957
, “
Electrochemical Polarization I. A Theoretical Analysis of the Shape of Polarization Curves
,”
J. Electrochem. Soc.
,
104
(
1
), pp.
56
63
.
45.
McCafferty
,
E.
,
2005
, “
Validation of Corrosion Rates Measured by the Tafel Extrapolation Method
,”
Corrosion Science
,
47
(
12
), pp.
3202
3215
.
46.
Mao
,
X.
,
Liu
,
X.
, and
Revie
,
R. W.
,
1994
, “
Pitting Corrosion of Pipeline Steel in Dilute Bicarbonate Solution With Chloride Ions
,”
Corrosion
,
50
(
9
), pp.
651
657
.
47.
Zhang
,
L.
,
Li
,
X. G.
,
Du
,
C. W.
, and
Cheng
,
Y. F.
,
2009
, “
Corrosion and Stress Corrosion Cracking Behavior of X70 Pipeline Steel in a CO2-Containing Solution
,”
J. Mater. Eng. Perform.
,
18
(
3
), pp.
319
323
.
48.
Castro
,
E. B.
,
Valentini
,
C. R.
,
Moina
,
C. A.
,
Vilche
,
J. R.
, and
Arvia
,
A. J.
,
1986
, “
The Influence of Ionic Composition on the Electrodissolution and Passivation of Iron Electrodes in Potassium Carbonate-Bicarbonate Solutions in the 8.4–10.5 pH Range at 25 °C
,”
Corros. Sci.
,
26
(
10
), pp.
781
793
.
49.
De Waard
,
C.
, and
Milliams
,
D. E.
,
1975
, “
Carbonic Acid Corrosion of Steel
,”
Corrosion
,
31
(
5
), pp.
177
181
.
50.
Gadala
,
I. M.
, and
Alfantazi
,
A.
,
2015
, “
Low Alloy X100 Pipeline Steel Corrosion and Passivation Behavior in Bicarbonate-Based Solutions of pH 6.7 to 8.9 With Groundwater Anions: An Electrochemical Study
,”
Metall. Mater. Trans. A
,
46
(
7
), pp.
3104
3116
.
51.
Owen
,
D. R. J.
,
1980
,
Finite Elements in Plasticity: Theory and Practice
,
E.
Hinton
, ed.,
Pineridge Press
,
Swansea, UK
.
You do not currently have access to this content.