Application of thin-walled high strength steel has become a trend in the oil and gas transportation system over long distance. Failure assessment is an important issue in the construction and maintenance of the pipelines. This work provides an engineering estimation procedure to determine the J-integral for the thin-walled pipes with small constant-depth circumferential surface cracks subject to the tensile loading based upon the General Electric/Electric Power Research (GE/EPRI) method. The values of elastic influence functions for stress intensity factor and plastic influence functions for fully plastic J-integral are derived in tabulated forms through a series of three-dimensional (3D) finite element (FE) calculations for a wide range of crack geometries and material properties. Furthermore, the fit equations for elastic and plastic influence functions are developed, where the effects of crack geometries are explicitly revealed. The new influence functions lead to an efficient J estimation and can be well applied for structural integrity assessment of thin-walled pipes with small constant-depth circumferential surface cracks under tension.

References

References
1.
Shih
,
C. F.
, and
Hutchinson
,
J. W.
,
1976
, “
Fully Plastic Solutions and Large-Scale Yielding Estimates for Plane Stress Crack Problems
,”
ASME J. Eng. Mater. Technol.
,
98
(4), pp.
289
295
.
2.
Kumar
,
V.
,
German
,
M. D.
, and
Shih
,
C. F.
,
1981
,
An Engineering Approach for Elastic-Plastic Fracture Analysis
,
Electric Power Research Institute
,
Palo Alto, CA
.
3.
Zahoor
,
A.
,
1989
,
Ductile Fracture Handbook
, Electric Power Research Institute,
Palo Alto, CA
.
4.
Chiodo
,
M. S. G.
, and
Ruggieri
,
C.
,
2010
, “
J and CTOD Estimation Procedure for Circumferential Surface Cracks in Pipes Under Bending
,”
Eng. Fract. Mech.
,
77
(
3
), pp.
415
436
.
5.
Foxen
,
J.
, and
Rahman
,
S.
,
2000
, “
Elastic-Plastic Analysis of Small Cracks in Tubes Under Internal Pressure and Bending
,”
Nucl. Eng. Des
,
197
(
1–2
), pp.
75
87
.
6.
Kumar
,
V.
,
German
,
M. D.
,
Wilkening
,
W. W.
,
Andrews
,
W. R.
,
Delorenzi
,
H. G.
, and
Mowbray
,
D. F.
,
1984
,
Advances in Elastic–Plastic Fracture Analysis
,
Electric Power Research Institute
,
Palo Alto, CA
.
7.
Kumar
,
V.
, and
German
,
M. D.
,
1988
,
Elastic-Plastic Fracture Analysis of Through-Wall and Surface Flaws in Cylinders
,
Electric Power Research Institute
,
Palo Alto, CA
.
8.
Paredes
,
M.
, and
Ruggieri
,
C.
,
2015
, “
Engineering Approach for Circumferential Flaws in Girth Weld Pipes Subjected to Bending Load
,”
Int. J. Pressure Vessels Piping
,
125
, pp.
49
65
.
9.
Mohan
,
R.
,
Krishna
,
A.
,
Brust
,
F. W.
, and
Wilkowski
,
G. M.
,
1998
, “
J-Estimation Schemes for Internal Circumferential and Axial Surface Cracks in Pipe Elbows
,”
ASME J. Pressure Vessel Technol.
,
120
(
4
), pp.
418
423
.
10.
Chattopadhyay
,
J.
,
Tomar
,
A. K. S.
,
Dutta
,
B. K.
, and
Kushwaha
,
H. S.
,
2005
, “
Elastic-Plastic J and COD Estimation Schemes for Through wall Circumferentially Cracked Elbow Under in-Plane Closing Moment
,”
Eng. Fract. Mech.
,
72
(
14
), pp.
2186
2217
.
11.
Chattopadhyay
,
J.
,
2006
, “
Improved J and COD Estimation by GE/EPRI Method in Elastic to Fully Plastic Transition Zone
,”
Eng. Fract. Mech.
,
73
(
14
), pp.
1959
1979
.
12.
Parise
,
L. F. S.
,
Ruggieri
,
C.
, and
O'Dowd
,
N. P.
,
2015
, “
Fully-Plastic Strain-Based J Estimation Scheme for Circumferential Surface Cracks in Pipes Subjected to Reeling
,”
ASME J. Pressure Vessel Technol.
,
137
(
4
), p.
041204
.
13.
Ainsworth
,
R. A.
,
1984
, “
The Assessment of Defects in Structures of Strain-Hardening Material
,”
Eng. Fract. Mech.
,
19
(
4
), pp.
633
642
.
14.
Kim
,
Y. J.
,
Kim
,
J. S.
,
Lee
,
Y. Z.
, and
Kim
,
Y. J.
,
2002
, “
Non-Linear Fracture Mechanics Analyses of Part Circumferential Surface Cracked Pipes
,”
Int. J. Fract.
,
116
(
4
), pp.
347
375
.
15.
Kim
,
Y. J.
, and
Budden
,
P. J.
,
2002
, “
Reference Stress Approximations for J and COD of Circumferential Through-Wall Cracked Pipes
,”
Int. J. Fract.
,
116
(
3
), pp.
195
218
.
16.
Kim
,
Y. J.
,
Kim
,
J. S.
,
Park
,
Y. J.
, and
Kim
,
Y. J.
,
2004
, “
Elastic-Plastic Fracture Mechanics Method for Finite Internal Axial Surface Cracks in Cylinders
,”
Eng. Fract. Mech.
,
71
(
7–8
), pp.
925
944
.
17.
Kim
,
N. H.
,
Oh
,
C. S.
,
Kim
,
Y. J.
,
Kim
,
J. S.
,
Jerng
,
D. W.
, and
Budden
,
P. J.
,
2011
, “
Limit Loads and Fracture Mechanics Parameters for Thick-Walled Pipes
,”
Int. J. Pressure Vessels Piping
,
88
(
10
), pp.
403
414
.
18.
Cho
,
D. H.
,
Seo
,
H. B.
,
Kim
,
Y. J.
,
Chang
,
Y. S.
,
Jhung
,
M. J.
, and
Choi
,
Y. H.
,
2011
, “
Advances in J-Integral Estimation of Circumferentially Surface Cracked Pipes
,”
Fatigue Fract. Eng. Mater. Struct.
,
34
(
9
), pp.
667
681
.
19.
Park
,
J. S.
,
Choi
,
Y. H.
, and
Im
,
S.
,
2014
, “
Generation of Plastic Influence Functions for J-Integral and Crack Opening Displacement of Thin-Walled Pipes With a Short Circumferential Through-Wall Crack
,”
Int. J. Pressure Vessels Piping
,
117–118
, pp.
117
24
.
20.
Cho
,
D. H.
,
Woo
,
S. W.
,
Chang
,
Y. S.
,
Choi
,
J. B.
,
Kim
,
Y. J.
,
Jhung
,
M. J.
, and
Choi
,
Y. H.
,
2010
, “
Enhancement of J Estimation for Typical Nuclear Pipes With a Circumferential Surface Crack Under Tensile Load
,”
J. Mech. Sci. Technol.
,
24
(
3
), pp.
681
686
.
21.
Jayadevan
,
K. R.
,
Østby
,
E.
, and
Thaulow
,
C.
,
2004
, “
Fracture Response of Pipelines Subjected to Large Plastic Deformation Under Tension
,”
Int. J. Pressure Vessels Piping
,
81
(
9
), pp.
771
783
.
22.
API
,
2013
, “
Welding of Pipelines and Related Facilities
,”
American Petroleum Institute
,
Washington, DC
, Standard No.
API 1104
.
23.
Anderson
,
T. L.
,
2005
,
Fracture Mechanics: Fundamentals and Applications
,
CRC Press
,
Boca Raton, FL
.
24.
Hutchinson, J. W.
, 1968, “
Singular Behaviour at the End of a Tensile Crack in a Hardening Material
,”
J. Mech. Phys. Solids
,
16
(1), pp. 13–31.
25.
Rice, J. R.
, and
Rosengren, G. F.
, 1968, “
Plane Strain Deformation Near a Crack Tip in a Power-Law Hardening Material
,”
J. Mech. Phys. Solids
,
16
(1), pp. 1–12.
26.
Ilyushin
,
A. A.
,
1946
, “
The Theory of Small Elastic-Plastic Deformations
,”
Prikadnaia Matematica i Mekhanika
,
10
, pp.
347
356
(in Russian).
27.
Hibbitt, H.
,
Karlsson, B.
, and
Sorensen, P.
, 2011, “
ABAQUS Analysis User's Manual Version 6.10
,” Simulia-Dassault Systèmes, Providence, RI.
28.
Mostaghel
,
N.
, and
Byrd
,
R. A.
,
2002
, “
Inversion of Ramberg-Osgood Equation and Description of Hysteresis Loops
,”
Int. J. Nonlinear Mech
,
37
(
8
), pp.
1319
1335
.
29.
Kim
,
Y. J.
,
Shim
,
D. J.
,
Nikbin
,
K.
,
Kim
,
Y. J.
,
Hwang
,
S. S.
, and
Kim
,
J. S.
,
2003
, “
Finite Element Based Plastic Limit Loads for Cylinders With Part-Through Surface Cracks Under Combined Loading
,”
Int. J. Pressure Vessels Piping
,
80
(
7–8
), pp.
527
540
.
You do not currently have access to this content.